17.若圓C1:x2+y2=m與圓C2:x2+y2-6x-8y+16=0外切.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若圓C1與x軸的正半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,P為第三象限內(nèi)一點(diǎn),且點(diǎn)P在圓C1上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.

分析 (Ⅰ)求出圓的圓心坐標(biāo),利用相切列出方程,即可求實(shí)數(shù)m的值;
(Ⅱ)求出點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,2),設(shè)P點(diǎn)的坐標(biāo)為(x0,y0),推出點(diǎn)M的坐標(biāo)為(0,$\frac{2{y}_{0}}{2-{x}_{0}}$),點(diǎn)N的坐標(biāo)為($\frac{2{x}_{0}}{2-{y}_{0}}$,0),表示出四邊形ABNM的面積,利用點(diǎn)P在圓C1上,得x02+y02=4,化簡(jiǎn)求解即可.

解答 解:(Ⅰ)圓C1的圓心坐標(biāo)(0,0),半徑為$\sqrt{m}$(m>0),
圓C2的圓心坐標(biāo)(3,4),半徑為3,圓心距為:5,
又兩圓外切,得$\sqrt{m}+3=5$,解得m=4.
(Ⅱ)由題易得點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,2),圓C1:x2+y2=4,
設(shè)P點(diǎn)的坐標(biāo)為(x0,y0),x0,y0∈(-2,0).
由題意,得點(diǎn)M的坐標(biāo)為(0,$\frac{2{y}_{0}}{2-{x}_{0}}$),點(diǎn)N的坐標(biāo)為($\frac{2{x}_{0}}{2-{y}_{0}}$,0),
四邊形ABNM的面積S=$\frac{1}{2}$|AN||BM|=$\frac{1}{2}|2-\frac{2{x}_{0}}{2-{y}_{0}}||2-\frac{2{y}_{0}}{2-{x}_{0}}|$=|$\frac{1}{2}•\frac{4-2{y}_{0}-2{x}_{0}}{2-{y}_{0}}•\frac{4-2{x}_{0}-2{y}_{0}}{2-{x}_{0}}$|=|$\frac{1}{2}•\frac{({4-2{y}_{0}-2{x}_{0})}^{2}}{(2-{y}_{0})(2-{x}_{0})}$|,
由點(diǎn)P在圓C1上,得x02+y02=4,
∴四邊形ABNM的面積S=$\frac{4(4-2{x}_{0}-2{y}_{0}+{x}_{0}{y}_{0})}{(2-{y}_{0})(2-{x}_{0})}=4$,
∴四邊形ABNM的面積為定值4.

點(diǎn)評(píng) 本題考查兩個(gè)圓的位置關(guān)系以及圓的方程的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=x3-x2-1有零點(diǎn)的區(qū)間是( 。
A.(0,1)B.(-1,0)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=sin2x+acosx+$\frac{5}{8}$a-$\frac{3}{2}$,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最大值最小值及相應(yīng)的x的集合;
(2)如果對(duì)于區(qū)間[0,$\frac{π}{2}$]上的任意一個(gè)x,都有f(x)≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的正(主)視圖與側(cè)(左)視圖均為邊長(zhǎng)為1的正方形,則下列圖形一定不是該幾何體俯視圖的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線C的中點(diǎn)在原點(diǎn)O,焦點(diǎn)$F({-2\sqrt{5},0})$,點(diǎn)A為左支上一點(diǎn),滿足|OA|=|OF|且|AF|=4,則雙曲線C的方程為( 。
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{36}-\frac{y^2}{16}=1$C.$\frac{x^2}{4}-\frac{y^2}{16}=1$D.$\frac{x^2}{16}-\frac{y^2}{36}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆寧夏高三上月考一數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù)).

(1)若函數(shù)的圖象過點(diǎn),函數(shù)有且只有一個(gè)零點(diǎn),求表達(dá)式;

(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆寧夏高三上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

若函數(shù)是定義在上的奇函數(shù),且 ,則( )

A.-2 B.-1

C.1 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖北省協(xié)作校高三聯(lián)考一數(shù)學(xué)(文)試卷(解析版) 題型:填空題

設(shè)函數(shù),若恰有2個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河南八市高二文上月考一數(shù)學(xué)試卷(解析版) 題型:解答題

在銳角中,內(nèi)角,所對(duì)的邊分別為,,,且

(1)求角的大小;

(2)若,,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案