A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
分析 當x≠0時,有xf′(x)>0,可得x>0時,f′(x)>0,函數(shù)f(x)在(0,+∞)單調(diào)遞增.又函數(shù)f(x)為R上的偶函數(shù),可得a=f(log0.53)=f(log23),利用對數(shù)函數(shù)的單調(diào)性及其f(x)的單調(diào)性即可得出.
解答 解:∵當x≠0時,有xf′(x)>0,
∴x>0時,f′(x)>0,函數(shù)f(x)在(0,+∞)單調(diào)遞增.
又函數(shù)f(x)為R上的偶函數(shù),∴a=f(log0.53)=f(log23),
∵0<log32<log23<log25,
∴f(log32)<f(log23)<f(log25),
∴c<a<b.
故選:C.
點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性、函數(shù)的奇偶性與單調(diào)性的應用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x<$\frac{2}{a}$或x>1} | B. | {x|$\frac{2}{a}$<x<1} | C. | {x|x<1或x>$\frac{2}{a}$} | D. | {x|1<x<$\frac{2}{a}$} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x2≥1,X<1 | B. | ?x2<1,x≥1 | C. | ?x2<1,x≥1 | D. | 3x≥1,x≥1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù),且在(0,1)上是增函數(shù) | B. | 奇函數(shù),且在(0,1)上是減函數(shù) | ||
C. | 偶函數(shù),且在(0,1)上是增函數(shù) | D. | 偶函數(shù),且在(0,1)上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com