分析 (I)根據(jù)新定義驗(yàn)證$|f({x_1})-f({x_2})|≤π|\frac{1}{x_1}-\frac{1}{x_2}|$是否成立即可;
(II)根據(jù)f(x)的單調(diào)性得出去絕對(duì)值號(hào)化簡(jiǎn)$|f({x_1})-f({x_2})|≤π|\frac{1}{x_1}-\frac{1}{x_2}|$,得出h(x)=f(x)+$\frac{π}{x}$為減函數(shù),令h′(x)≤0恒成立,分離參數(shù)得a≤$\frac{π}{x}$-x(x+1),求出g(x)=$\frac{π}{x}$-x(x+1)的最小值即可得出a的范圍.
解答 解:(I)對(duì)任意x1,x2∈(0,1],|f(x1)-f(x2)|=|$\frac{π}{{x}_{1}}$-$\frac{π}{{x}_{2}}$|≤π|$\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}$|,
∴函數(shù)y=$\frac{π}{x}$是“以π為界的類(lèi)斜率函數(shù)”.
(II)f′(x)=x+1+$\frac{a}{x}$,∵x>0,a>0,∴f′(x)>0,
∴f(x)在區(qū)間(0,1]上為增函數(shù).
設(shè)0<x1<x2≤1,
則|f(x1)-f(x2)|=f(x2)-f(x${\;}_{{\;}_{1}}$),|$\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}$|=$\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}$.
∴|f(x1)-f(x2)|≤π|$\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}$|?f(x2)-f(x${\;}_{{\;}_{1}}$)≤π($\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}$)
?f(x2)+$\frac{π}{{x}_{2}}$≤f(x1)+$\frac{π}{{x}_{1}}$.
設(shè)h(x)=f(x)+$\frac{π}{x}$=$\frac{1}{2}$x2+x+alnx+$\frac{π}{x}$,則h(x)在(0,1]上為減函數(shù).
∴h′(x)=x+1+$\frac{a}{x}$-$\frac{π}{{x}^{2}}$=$\frac{{x}^{2}(x+1)+ax-π}{{x}^{3}}$≤0在(0,1]上恒成立,
∴a≤$\frac{π}{x}$-x(x+1),
令g(x)=$\frac{π}{x}$-x(x+1),則g′(x)=-$\frac{π}{{x}^{2}}$-2x-1<0,
∴g(x)在(0,1]上為減函數(shù),gmin(x)=g(1)=π-2.
∴a≤π-2,又a>0,
∴a的取值范圍為(0,π-2].
點(diǎn)評(píng) 本題考查了對(duì)新定義的理解,導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,函數(shù)恒成立問(wèn)題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 垂心 | B. | 重心 | C. | 外心 | D. | 內(nèi)心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | ($\frac{2}{3}$,1) | C. | (0,$\frac{1}{3}$) | D. | ($\frac{1}{3}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-1)2+y2=4 | B. | x2+(y-1)2=4 | C. | (x+1)2+y2=4 | D. | x2+(y+1)2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sinθ-cosθ | B. | cosθ-sinθ | C. | ±(sinθ-cosθ) | D. | sinθ+cosθ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com