【題目】如圖,為了測量正在海面勻速行駛的某船的速度,在海岸上選取距離1千米的兩個觀察
點C、D,在某天10:00觀察到該船在A處,此時測得∠ADC=30°,2分鐘后該船行駛至B處,此時測得∠ACB=60°,∠BCD=45°,∠ADB=60°,
求該船航行的速度.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,某轎車銷售商為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿萬元,可減千元;方案二:金額超過萬元(含萬元),可搖號三次,其規(guī)則是依次裝有個幸運號、個吉祥號的一個搖號機,裝有個幸運號、個吉祥號的二號搖號機,裝有個幸運號、個吉祥號的三號搖號機各搖號一次,其優(yōu)惠情況為:若搖出個幸運號則打折,若搖出個幸運號則打折;若搖出個幸運號則打折;若沒有搖出幸運號則不打折.
(1)若某型號的車正好萬元,兩個顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
(2)若你評優(yōu)看中一款價格為萬的便型轎車,請用所學(xué)知識幫助你朋友分析一下應(yīng)選擇哪種付款方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是棱長為3的正方體,點在上,點在上,且,(1)求證: 四點共面; (2)若點在上, ,點在上, ,垂足為,求證: 面; (3)用表示截面和面所成銳二面角大小,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年電子商務(wù)蓬勃發(fā)展,在2017年的“年貨節(jié)”期間,一網(wǎng)絡(luò)購物平臺推銷了三種商品,某網(wǎng)購者決定搶購這三種商品,假設(shè)該名網(wǎng)購者都參與了三種商品的搶購,搶購成功與否相互獨立,且不重復(fù)搶購?fù)环N商品,對三種商品的搶購成功的概率分別為 ,已知三件商品都被搶購成功的概率為,至少有一件商品被搶購成功的概率為 .
(1)求的值;
(2)若購物平臺準備對搶購成功的三件商品進行優(yōu)惠減免活動, 商品搶購成功減免百元, 商品搶購成功減免百元, 商品搶購成功減免百元,求該名網(wǎng)購者獲得減免的總金額(單位:百元)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距12海里,漁船乙以10海里/小時的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時從B處出發(fā)沿北偏東α的方向追趕漁船乙,剛好用2小時追上.
(1)求漁船甲的速度;
(2)求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}滿足a1=2,a2=4(a3﹣a4),數(shù)列{bn}滿足bn=3﹣2log2an .
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn= ,求數(shù)列{cn}的前n項和Tn;
(3)若λ>0,求對所有的正整數(shù)n都有2λ2﹣kλ+2>a2nbn成立的k的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 矩形所在的平面, 分別是的中點.
(1)求證: 平面;
(2)求證: .
(3)當(dāng)滿足什么條件時,能使平面成立?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題
①函數(shù)y=tanx在第一象限是增函數(shù);
②函數(shù)y=cos2( ﹣x)是偶函數(shù);
③函數(shù)y=4sin(2x﹣ )的一個對稱中心是( ,0);
④函數(shù)y=sin(x+ )在閉區(qū)間[﹣ , ]上是增函數(shù);
寫出所有正確的命題的題號: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com