【題目】如圖,已知是棱長為3的正方體,點(diǎn)上,點(diǎn)上,且,(1)求證: 四點(diǎn)共面; 2)若點(diǎn)上, ,點(diǎn)上, ,垂足為,求證: ; 3)用表示截面和面所成銳二面角大小,求

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的左、右焦點(diǎn)分別為上頂點(diǎn)為,右頂點(diǎn)為,以為直徑的圓過點(diǎn),直線與圓相交得到的弦長為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓相交于兩點(diǎn), 軸, 軸分別相交于兩點(diǎn),滿足:①記的中點(diǎn)為,且兩點(diǎn)到直線的距離相等;②記的面積分別為當(dāng)取得最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的最小正周期是 ,最小值是﹣2,且圖象經(jīng)過點(diǎn)( ,0),則f(0)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn)A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).

(1)求圓C的方程;

(2)若,求實(shí)數(shù)k的值;

(3)過點(diǎn)(0,4)作動(dòng)直線m交圓C于E,F(xiàn)兩點(diǎn).試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點(diǎn)M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x2+mx+1=0有兩個(gè)不等的負(fù)根;命題q:4x2+4(m﹣2)x+1=0無實(shí)根.若命題p與命題q有且只有一個(gè)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x不等式x2﹣2mx+m+2<0m∈R)的解集為M

(1)當(dāng)M為空集時(shí),求m的取值范圍;

(2)在(1)的條件下,求的最大值;

3當(dāng)M不為空集,M [1,4]時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量正在海面勻速行駛的某船的速度,在海岸上選取距離1千米的兩個(gè)觀察

點(diǎn)C、D,在某天10:00觀察到該船在A處,此時(shí)測得∠ADC=30°,2分鐘后該船行駛至B處,此時(shí)測得∠ACB=60°,∠BCD=45°,∠ADB=60°,

求該船航行的速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD是直角梯形,其中AB⊥AD,AB=BC=1且AD= AA1=2.

(1)求證:直線C1D⊥平面ACD1;
(2)試求三棱錐A1﹣ACD1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)求曲線的普通方程和直線的傾斜角;

2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊答案
鍏� 闂�