分析 (1)利用復(fù)數(shù)的運(yùn)算法則、實(shí)部、虛部的定義即可得出.
(2)由(1)可知:z+$\frac{1}{z}$為實(shí)數(shù),則$b-\frac{{a}^{2}+^{2}}$=0,而b≠0,即可證明.
解答 (1)解:∵z+$\frac{1}{z}$=a+bi+$\frac{1}{a+bi}$=a+bi+$\frac{a-bi}{{a}^{2}+^{2}}$=a+$\frac{a}{{a}^{2}+^{2}}$+$(b-\frac{{a}^{2}+^{2}})$i,實(shí)部、虛部分別為a+$\frac{a}{{a}^{2}+^{2}}$,$b-\frac{{a}^{2}+^{2}}$.
(2)證明:z+$\frac{1}{z}$為實(shí)數(shù),則$b-\frac{{a}^{2}+^{2}}$=0,∵b≠0,可得a2+b2=1,即|z|=1.反之也成立.
∴z+$\frac{1}{z}$為實(shí)數(shù)的充要條件是|z|=1.
點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、實(shí)部、虛部的定義、充要條件,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k<-3 | B. | k>-1 | C. | -3<k<-1 | D. | k<-3或k>-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 7 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤0 | B. | a<0 | C. | a≥0 | D. | a>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S2>S1>S3 | B. | S1>S3>S2 | C. | S3>S1>S2 | D. | S3>S2>S1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com