【題目】設p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實數(shù)x滿足 <0.
(1)若a=1,且p∨q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

【答案】
(1)解:由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,

又a>0,所以a<x<3a,

當a=1時,1<x<3,即p為真時實數(shù)x的取值范圍是1<x<3.

q為真時 等價于(x﹣2)(x﹣3)<0,得2<x<3,

即q為真時實數(shù)x的取值范圍是2<x<3.

若p∨q為真,則實數(shù)x的取值范圍是1<x<3


(2)解:p是q的必要不充分條件,等價于qp且p推不出q,

設A={x|a<x<3a},B={x|2<x<3},則BA;

所以實數(shù)a的取值范圍是1≤a≤2


【解析】(1)利用一元二次不等式的解法可化簡命題p,q,若p∨q為真,則p,q至少有1個為真,即可得出;(2)根據(jù)p是q的必要不充分條件,即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=AD=a,E為CD上任意一點.
(I)求證:B1E⊥AD1;
(Ⅱ)若CD= a,是否存在這樣的E點,使得AD1與平面B1AE成45°的角?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,平面平面,底面為梯形,,,,且均為正三角形,的中點,重心.

(1)求證:平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),當x = -1時取得極大值7,當x = 3時取得極小值;

(1)求a,b的值;

(2)求f(x)的極小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= x3+x2﹣ax+3a在區(qū)間[1,2]上單調遞增,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)處取得極大值,則實數(shù)的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)證明函數(shù)f(x)在(﹣1,+∞)上為單調遞增函數(shù);
(2)若x∈[0,2],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
(2)設f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:﹣5﹣f(x1)<f(x2)<﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線 ,直線與拋物線交于, 兩點.

(1)若直線, 的斜率之積為,證明:直線過定點;

(2)若線段的中點在曲線 上,求的最大值.

查看答案和解析>>

同步練習冊答案