【題目】已知函數(shù)f(x)=
(1)證明函數(shù)f(x)在(﹣1,+∞)上為單調(diào)遞增函數(shù);
(2)若x∈[0,2],求函數(shù)f(x)的值域.

【答案】
(1)證法一:

設(shè)x1,x2是區(qū)間(﹣1,+∞)上的兩個(gè)任意實(shí)數(shù),且x1<x2,

于是 =

因?yàn)閤2>x1>﹣1,所以x1+1>0,x2+1>0,x2﹣x1>0,

所以f(x2)﹣f(x1)>0,所以f(x1)<f(x2),

所以函數(shù)f(x)在(﹣1,+∞)上為單調(diào)增函數(shù).

證法二:∵f(x)=

∴f′(x)=

當(dāng)x∈(﹣1,+∞)時(shí),

f′(x)>0恒成立,

故函數(shù)f(x)在(﹣1,+∞)上為單調(diào)遞增函數(shù)


(2)解:由(1)可知,函數(shù)在[0,2]上為單調(diào)增函數(shù),

于是,當(dāng)x∈[0,2]時(shí),f(x)min=f(0)=1,…(11分)

所以,當(dāng)x∈[0,2]時(shí),函數(shù)f(x)的值域?yàn)?


【解析】(1)證法一:設(shè)x1 , x2是區(qū)間(﹣1,+∞)上的兩個(gè)任意實(shí)數(shù),且x1<x2 , 作差判斷f(x1),f(x2)的大小,可得緒論
證法二:求導(dǎo),根據(jù)x∈(﹣1,+∞)時(shí),f′(x)>0恒成立,可得:函數(shù)f(x)在(﹣1,+∞)上為單調(diào)遞增函數(shù);(2)根據(jù)(1)中函數(shù)的單調(diào)性,求出函數(shù)的最值,進(jìn)而可得函數(shù)的值域.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的值域的相關(guān)知識,掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,以及對函數(shù)單調(diào)性的判斷方法的理解,了解單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知C= ,向量 =(sinA,1), =(1,cosB),且
(1)求A的值;
(2)若點(diǎn)D在邊BC上,且3 = , = ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實(shí)數(shù)x滿足 <0.
(1)若a=1,且p∨q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,有一塊矩形空地ABCD,AB=2km,BC=4km,根據(jù)周邊環(huán)境及地形實(shí)際,當(dāng)?shù)卣?guī)劃在該空地內(nèi)建一個(gè)箏形商業(yè)區(qū)AEFG,箏形的頂點(diǎn)A,E,F(xiàn),G為商業(yè)區(qū)的四個(gè)入口,其中入口F在邊BC上(不包含頂點(diǎn)),入口E,G分別在邊AB,AD上,且滿足點(diǎn)A,F(xiàn)恰好關(guān)于直線EG對稱,矩形內(nèi)箏形外的區(qū)域均為綠化區(qū).

(1)請確定入口F的選址范圍;
(2)設(shè)商業(yè)區(qū)的面積為S1 , 綠化區(qū)的面積為S2 , 商業(yè)區(qū)的環(huán)境舒適度指數(shù)為 ,則入口F如何選址可使得該商業(yè)區(qū)的環(huán)境舒適度指數(shù)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)作曲線其中為自然對數(shù)的底數(shù)的切線,切點(diǎn)為,設(shè)軸上的投影是點(diǎn),過點(diǎn)再作曲線的切線,切點(diǎn)為,設(shè)軸上的投影是點(diǎn),依次下去,得到第個(gè)切點(diǎn)則點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的左右頂點(diǎn)為,右焦點(diǎn)為,一條準(zhǔn)線方程是,點(diǎn)為橢圓上異于的兩點(diǎn),點(diǎn)的中點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線交直線于點(diǎn),記直線的斜率為,直線的斜率為,求證:為定值;

(3)若,求直線斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有人持金出五關(guān),前關(guān)二而稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤,問本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金 ,第2關(guān)收稅金為剩余金的 ,第3關(guān)收稅金為剩余金的 ,第4關(guān)收稅金為剩余金的 ,第5關(guān)收稅金為剩余金的 ,5關(guān)所收稅金之和,恰好重1斤,問原來持金多少?”若將題中“5關(guān)所收稅金之和,恰好重1斤,問原來持金多少?”改成假設(shè)這個(gè)原來持金為x,按此規(guī)律通過第8關(guān),則第8關(guān)需收稅金為x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= ,若曲線f(x)在點(diǎn)(e,f(e))處的切線與直線e2x﹣y+e=0垂直(其中e為自然對數(shù)的底數(shù)).
(1)若f(x)在(m,m+1)上存在極值,求實(shí)數(shù)m的取值范圍;
(2)求證:當(dāng)x>1時(shí),

查看答案和解析>>

同步練習(xí)冊答案