【題目】設函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)若對恒成立,求實數(shù)的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2﹣12x﹣14y+60=0及其上一點A(2,4).
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,0)滿足:存在圓M上的兩點P和Q,使得 ,求實數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(其中,,)的圖象的兩條相鄰對稱軸之間的距離為,且圖象上一個最低點為.
(1)求函數(shù)的解析式;
(2)當時,求函數(shù)的值域;
(3)若方程在上有兩個不相等的實數(shù)根,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)同時滿足以下三個條件:
①對任意的,總有;
②;
③若,且,則有成立,則稱為“友誼函數(shù)”.
()若已知為“友誼函數(shù)”,求的值.
()分別判斷函數(shù)與在區(qū)間上是否為“友誼函數(shù)”,并給出理由.
()已知為“友誼函數(shù)”,且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設雙曲線x2﹣ =1的左、右焦點分別為F1、F2 , 若點P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內,已知點A(1,0,B(-1,0),圓的方程為,點為圓上的動點.
(1)求過點的圓的切線方程.
(2)求的最大值及此時對應的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設拋物線y2=2px(p>0)的焦點為F,拋物線上的點A到y(tǒng)軸的距離等于|AF|﹣1,
(1)求p的值;
(2)若直線AF交拋物線于另一點B,過B與x軸平行的直線和過F與AB垂直的直線交于點N,AN與x軸交于點M,求M的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,且滿足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB), =(cosx,sinx),若函數(shù)f(x)= 的圖象關于直線x= 對稱,求角A,B.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側面PAB⊥底面ABCD,△PAB為正三角形.AB⊥AD,CD⊥AD,點E、M為線段BC、AD的中點,F(xiàn),G分別為線段PA,AE上一點,且AB=AD=2,PF=2FA.
(1)確定點G的位置,使得FG∥平面PCD;
(2)試問:直線CD上是否存在一點Q,使得平面PAB與平面PMQ所成銳二面角的大小為30°,若存在,求DQ的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com