精英家教網 > 高中數學 > 題目詳情
已知等差數列{an}滿足:a3=7,a5+a7=26.{an}的前n項和為Sn
(Ⅰ)求an及Sn;
(Ⅱ)令(n∈N*),求數列{bn}的前n項和Tn
【答案】分析:(1)根據等差數列所給的項和項間的關系,列出關于基本量的方程,解出等差數列的首項和公差,寫出數列的通項公式和前n項和公式.
(2)根據前面做出的數列構造新數列,把新數列用裂項進行整理變?yōu)閮刹糠值牟,合并同類項,得到最簡結果,本題考查的是數列求和的典型方法--裂項法,注意解題過程中項數不要出錯.
解答:解:(Ⅰ)設等差數列{an}的公差為d,
∵a3=7,a5+a7=26,
∴有,
解得a1=3,d=2,
∴an=3+2(n-1)=2n+1;
Sn==n2+2n;
(Ⅱ)由(Ⅰ)知an=2n+1,
∴bn====,
∴Tn===,
即數列{bn}的前n項和Tn=
點評:本題考查等差數列的通項公式與前n項和公式的應用、裂項法求數列的和,熟練數列的基礎知識是解答好本類題目的關鍵.是每年要考的一道高考題目.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知等差數列{an},公差d不為零,a1=1,且a2,a5,a14成等比數列;
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足bn=an3n-1,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足a2=0,a6+a8=-10
(1)求數列{an}的通項公式;     
(2)求數列{|an|}的前n項和;
(3)求數列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知等差數列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若{an}為遞增數列,請根據如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案