3、在△ABC中,若2cosBsinA=sinC,若則△ABC的形狀一定是
等腰
三角形.
分析:等式即  2cosBsinA=sin(A+B),展開化簡可得sin(A-B)=0,由-π<A-B<π,得 A-B=0,故三角形ABC是等腰三角形.
解答:解:在△ABC中,若2cosBsinA=sinC,即 2cosBsinA=sin(A+B)=sinAcosB+cosAsinB,
∴sinAcosB-cosAsinB=0,即 sin(A-B)=0,∵-π<A-B<π,∴A-B=0,
故△ABC 為等腰三角形,
故答案為:等腰.
點評:本題考查兩角和正弦公式,誘導公式,根據(jù)三角函數(shù)的值求角,得到sin(A-B)=0,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若∠C=60°,則
a
b+c
+
b
a+c
=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結(jié)論:
①函數(shù)y=x3在R上既是奇函數(shù)又是增函數(shù).
②命q:?x∈R,tanx=1;命題p:?x∈R,x2-x+1>0,命題“p∧¬q”是假命題;
③函數(shù)y=f(x)的圖象與直線x=a至多一個交點.
④在△ABC中,若
AB
CA
>0,則∠A為銳角
其中正確的命題有( 。﹤.( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若b+c=
2
+1
,C=45°,B=30°,則b、c的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下四個命題:
①若命題p:“?x∈R,使得x2+x+1<0”,則¬p:“?x∈R,均有x2+x+1≥0”
②函數(shù)y=3•2x+1的圖象可以由函數(shù)y=2x的圖象僅通過平移得到
③函數(shù)y=
1
2
ln
1-cosx
1+cosx
y=lntan
x
2
是同一函數(shù)
④在△ABC中,若
AB
BC
3
=
BC
CA
2
=
CA
AB
1
,則tanA:tanB:tanC=3:2:1
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若A=105°,B=45°,b=2
2
,則邊長c=( 。
A、1
B、2
C、
2
D、
3

查看答案和解析>>

同步練習冊答案