如圖1-3-16,已知RtABC中,D是斜邊AB的中點,DEABD,交ACF,交BC延長線于E,BG⊥BA,交DC延長線于H,交AC延長線于G.?

圖1-3-16

求證:(1)GH·CE =DF·BC;?

(2)DC2=DF·DE;?

(3)CH·CD =GH·DE;?

(4)GBBA =CHBH;?

(5)CH·EF =BA·DF.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)為了了解某年段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);…;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前3個組的頻率之比為3:8:19,且第二組的頻數(shù)為8.
(Ⅰ)將頻率當作概率,請估計該年段學生中百米成績在[16,17)內的人數(shù);
(Ⅱ)求調查中隨機抽取了多少個學生的百米成績;
(Ⅲ)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)為了了解某年級1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);…;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前3個組的頻率之比為3:8:19,且第二組的頻數(shù)為8.
(1)請估計該年級學生中百米成績在[16,17)內的人數(shù);
(2)求調查中共隨機抽取了多少個學生的百米成績;
(3)若從第一、五組中隨機取出兩個學生的成績,記為m,n,若m,n都在區(qū)間[13,14]上,則得4分,若m,n都在區(qū)間[17,18]上,則得2分,否則得0分,用X表示得分,求X的分布列并計算期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1-3-16,已知RtABC中,D是斜邊AB的中點,DEABD,交ACF,交BC延長線于E,BG⊥BA,交DC延長線于H,交AC延長線于G.

圖1-3-16

求證:(1)GH·CE =DF·BC;

(2)DC2=DF·DE;

(3)CH·CD =GH·DE;

(4)GBBA =CHBH;

(5)CH·EF =BA·DF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1-3-16,已知△ABC中,DE∥FG∥BC,AD∶DF∶FB=2∶3∶4,

求S△ADE∶S四邊形DEGF∶S四邊形BCGF.

圖1-3-16

查看答案和解析>>

同步練習冊答案