學(xué)校舉辦運(yùn)動(dòng)會(huì),高一(1)班共有28名同學(xué)參見比賽,有15人參加游泳比賽,有8人參加田徑比賽,有14人參加球類比賽,同事參加游泳比賽和田徑比賽的有3人,同時(shí)參加游泳比賽和球類比賽的有3人,沒有人同時(shí)參加三項(xiàng)比賽,問同時(shí)參加田徑和球類比賽的有多少人?只參加游泳一項(xiàng)比賽的有多少人?
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問題
專題:應(yīng)用題,排列組合
分析:根據(jù)15人參加游泳比賽,有8人參加田徑比賽,同時(shí)參加游泳和田徑的有3人,同時(shí)參加游泳和球類比賽的有3人,可以求得只參加游泳比賽的人數(shù);再結(jié)合總?cè)藬?shù)即可求得同時(shí)參加田徑和球類比賽的人數(shù).
解答: 解:只參加游泳比賽的人數(shù):15-3-3=9(人);
同時(shí)參加田徑和球類比賽的人數(shù):8+14-(28-9)=3(人).
點(diǎn)評(píng):本題主要考查排列、組合及簡(jiǎn)單計(jì)數(shù)問題,考查集合之間的元素關(guān)系,注意每?jī)煞N比賽的公共部分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a、b是常數(shù),關(guān)于x的一元二次方程x2+(a+b)x+3+
ab
2
=0有實(shí)數(shù)解記為事件A,
(1)若a∈{1,2,3,4},b∈{2,3,4,5},求P(A);
(2)若a∈R、b∈R,-6≤a+b≤6且-6≤a-b≤6,求P(A)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)P(3,0)在下列條件下求直線方程:
(1)l過直線m:2x-y-2=0與直線n:x+y+3=0的交點(diǎn);
(2)l被圓C:x2+y2-4x-4y=0所截得的弦長(zhǎng)為2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一正方形的兩頂點(diǎn)為雙曲線C的兩焦點(diǎn),若另外兩個(gè)項(xiàng)點(diǎn)在雙曲線C上,則雙曲線C的離心率e=( 。
A、
5
+1
2
B、
2
2
+1
2
C、
3
+1
D、
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2011年西安世園會(huì)組委會(huì)要從五名志愿者中選派四人分別從事翻譯、導(dǎo)游、禮儀、司機(jī)四項(xiàng)不同的工作,若其中有一名志愿者只能從事司機(jī)工作,其余四人均能從事這四項(xiàng)工作,則不同的選派方案共有( 。
A、240種B、36種
C、24種D、48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸非負(fù)半軸重合,曲線C的極坐標(biāo)方程為ρ=2sinθ,直線l的參數(shù)方程為
x=t
y=2+
3
t
(t為參數(shù)),直線l與曲線C交于A、B,則 線段AB的長(zhǎng)等于( 。
A、
1
2
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如程序框圖所示已知集合A={x|框圖中輸出的x值},集合B={y|框圖中輸出的y值},當(dāng)x=1時(shí)A∩B=( 。
A、∅B、{3}
C、{1,3,5}D、{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4acosx•sin(x-
π
3
)+
3
a+b,設(shè)x∈[0.
π
2
],f(x)的最小值是-2,最大值是
3
,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
kx+1,x≤0
lnx,x>0
,下列關(guān)于函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)的判斷正確的是(  )
A、無論k為何值,均有2個(gè)零點(diǎn)
B、無論k為何值,均有4個(gè)零點(diǎn)
C、當(dāng)k>0時(shí),有3個(gè)零點(diǎn);當(dāng)k<0時(shí),有2個(gè)零點(diǎn)
D、當(dāng)k>0時(shí),有4個(gè)零點(diǎn);當(dāng)k<0時(shí),有1個(gè)零點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案