2.已知cosα•tanα<0,那么角α是( 。
A.第一或第二象限角B.第二或第三象限角
C.第三或第四象限角D.第一或第四象限角

分析 利用同角三角函數(shù)的基本關(guān)系式化切為弦得答案.

解答 解:∵tanα•cosα=cosα•$\frac{sinα}{cosα}$=sinα<0且cosα≠0,
∴角α是第三或第四象限角.
故選:C.

點評 本題考查三角函數(shù)的象限符號,考查了同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等比數(shù)列{an}各項均為正數(shù),公比為q,滿足an+1<an,a2a8=6,a4+a6=5,則q2=( 。
A.$\frac{5}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果z 1、z 2∈C且z 1$\overline{{z}_{2}}$=$\overline{{z}_{1}}$z 2≠0,則 $\frac{{z}_{1}}{{z}_{2}}$是(  )
A.虛數(shù)B.純虛數(shù)C.實數(shù)D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)(i-$\frac{1}{i}$)3的虛部是( 。
A.-8B.-8iC.8D.8i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知扇形的圓心角的弧度數(shù)為2,其弧長也是2,則該扇形的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.有一個不透明的袋子,裝有4個完全相同的小球,球上分別編有數(shù)字1,2,3,4.
(Ⅰ)若逐個不放回取球兩次,求第一次取到球的編號為偶數(shù)且兩個球的編號之和能被3整除的概率;
(Ⅱ)若先從袋中隨機取一個球,該球的編號為a,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為b,求直線ax+by+1=0與圓x2+y2=$\frac{1}{16}$沒有公共點的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC中,點A的坐標(biāo)為(2sinx,cosx),點B的坐標(biāo)為(sinx,-2$\sqrt{3}$sinx)(x∈R),f(x)=$\overrightarrow{OA}$$•\overrightarrow{OB}$+m+1(O為坐標(biāo)原點),求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用數(shù)學(xué)歸納法證明1+2+3+4+…++(2n-1)+2n=2n2+n,當(dāng)n=k+1時左端應(yīng)在n=k時的基礎(chǔ)上加的項是(  )
A.2k+1B.2k+2C.(2k+1)+(2k+2)D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)Ρ是橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$上的點.若F1、F2是橢圓的兩個焦點,則|PF1|+|PF2|=10.

查看答案和解析>>

同步練習(xí)冊答案