在等差數(shù)列中,, 則此數(shù)列的前5項(xiàng)和為         .
50
解:因?yàn)榈炔顢?shù)列中,, 數(shù)列的前5項(xiàng)和為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的通項(xiàng)是關(guān)于x的不等式  的解集中整數(shù)的個數(shù).
(1)求并且證明是等差數(shù)列;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:;
(3)對于(2)中的命題,對一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,
請證明你的結(jié)論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且的公比
(1)求;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在⊿ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,A<B<C,A,B,C成等差數(shù)列,公差為,且也成等差數(shù)列.
(I)求;
(II)若,求⊿ABC的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知 是數(shù)列的前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列 的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù);
(3)記數(shù)列的前的和為,若恒成立,求正整數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)正數(shù)數(shù)列的前n項(xiàng)和為bn,數(shù)列的前n項(xiàng)積為cn,則數(shù)列中最接近2012的數(shù)是(   )
A.2010   B.1980   C.2040   D.1990

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為綜合治理交通擁堵狀況,緩解機(jī)動車過快增長勢頭,一些大城市出臺了“機(jī)動車搖號上牌”的新規(guī).某大城市2012年初機(jī)動車的保有量為600萬輛,預(yù)計此后每年將報廢本年度機(jī)動車保有量的5%,且報廢后機(jī)動車的牌照不再使用,同時每年投放10萬輛的機(jī)動車牌號,只有搖號獲得指標(biāo)的機(jī)動車才能上牌.經(jīng)調(diào)研,獲得搖號指標(biāo)的市民通常都會在當(dāng)年購買機(jī)動車上牌.
(1)問:到2016年初,該城市的機(jī)動車保有量為多少萬輛;
(2)根據(jù)該城市交通建設(shè)規(guī)劃要求,預(yù)計機(jī)動車的保有量少于500萬輛時,該城市交通擁堵狀況才真正得到緩解.問:至少需要多少年可以實(shí)現(xiàn)這一目標(biāo).
(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

公差不為0的等差數(shù)列{an}中,a2、a3、a6依次成等比數(shù)列,則公比等于(   )
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,(    )
A. 5B.6C.4D.8

查看答案和解析>>

同步練習(xí)冊答案