已知不等式ax2+bx+2>0的解集為{x|-1<x<2},則不等式2x2+bx+a<0的解集為( )
A.
B.
C.{x|-2<x<1}
D.{x|x<-2,或x>1}
【答案】分析:不等式ax2+bx+2>0的解集為{x|-1<x<2},ax2+bx+2=0的兩根為-1,2,且a<0,根據(jù)韋達(dá)定理,我們易得a,b的值,代入不等式2x2+bx+a<0 易解出其解集.
解答:解:∵不等式ax2+bx+2>0的解集為{x|-1<x<2},
∴ax2+bx+2=0的兩根為-1,2,且a<0
即-1+2=-
(-1)×2=
解得a=-1,b=1則不等式可化為2x2+x-1<0
解得
故選A.
點評:本題考查的知識點是一元二次不等式的解法,及三個二次之間的關(guān)系,其中根據(jù)三個二次之間的關(guān)系求出a,b的值,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2-bx-2>0的解集為{x|1<x<2}則a+b=
-4
-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2-5x+b>0的解集是{x|-3<x<-2},則不等式ax2-5x+b>0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+bx-2>0的解集為(-∞,-2)∪(3,+∞),則a+b=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+bx-3>0的解集為{x|x>1或x<-3},則不等式
b-x
x+a
>0
的解集為( 。

查看答案和解析>>

同步練習(xí)冊答案