分析 (1)曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+5=0,利用互化公式可得:曲線C的直角坐標(biāo)方程直線l的直角坐標(biāo)方程為xsinα-ycosα+sinα=0,利用點(diǎn)到直線的距離公式及其直線與曲線相切的充要條件即可得出.
(2)設(shè)x=3+2cosθ,y=2sinθ.可得x+y=2$\sqrt{2}$$sin(θ+\frac{π}{4})$+3,利用三角函數(shù)的單調(diào)性即可得出.
解答 解:(1)曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+5=0,
可得曲線C的直角坐標(biāo)方程為:x2+y2-6x+5=0,配方為:(x-3)2+y2=4,
直線l的直角坐標(biāo)方程為xsinα-ycosα+sinα=0,
由直線與曲線相切得:$\frac{|3sinα+sinα|}{\sqrt{si{n}^{2}α+(-cosα)^{2}}}$=2,
所以|sinα|=$\frac{1}{2}$,
因?yàn)棣痢蔥0,π),所以α=$\frac{π}{6}$或$\frac{5π}{6}$.
(2)設(shè)x=3+2cosθ,y=2sinθ.
則x+y=3+2cosθ+2sinθ=2$\sqrt{2}$$sin(θ+\frac{π}{4})$+3∈$[3-2\sqrt{2},3+2\sqrt{2}]$.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程的應(yīng)用、點(diǎn)到直線的距離公式、直線與圓相切的性質(zhì)、三角函數(shù)的單調(diào)性、和差公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | π | B. | 1 | C. | $\frac{π}{2}$ | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{15}{17}$ | B. | $\frac{16}{17}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{12}{7}$ | B. | $\frac{77}{75}$ | C. | $\frac{95}{36}$ | D. | $\frac{125}{77}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com