8.從某大學隨機抽取10名大學生,調(diào)查其家庭月收入與其每月上學的開支情況,獲得第i個家庭的月收入xi(單位:千元)與其每月上學的開支yi(單位:千元)的數(shù)據(jù)資料,算得:
$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.
(1)求其每月上學的開支y對月收入x的線性回歸方程$\widehat{y}$=bx+a;
(2)若某學生家庭月收入為7千元,預測該家庭每月支付其上學的費用,
附:線性回歸方程$\widehat{y}$=bx+a中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\widehat{y}$-b$\overline{x}$,其$\overline{x}$,$\overline{y}$為樣本平均值.

分析 (1)利用已知條件求出,樣本中心坐標,利用參考公式求出$\stackrel{∧}{a}$和$\stackrel{∧}$,然后求出線性回歸方程$\stackrel{∧}{y}$=0.3x-0.4;
(2)通過x=7,利用回歸直線方程,即可求得家庭每月支付其上學的費用.

解答 解:由題意可知:n=10,$\overline{x}$=$\frac{1}{10}$×$\sum_{i=1}^{10}$xi=8,$\overline{y}$=$\frac{1}{10}$×$\sum_{i=1}^{10}$yi=2,
$\stackrel{∧}$=$\frac{\sum_{i=1}^{10}{x}_{i}{y}_{i}-10\overline{x}\overline{y}}{\sum_{i=1}^{10}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{184-10×8×2}{720-10×{8}^{2}}$=0.3,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=2-0.3×8=-0.4,
每月上學的開支y對月收入x的線性回歸方程$\stackrel{∧}{y}$=0.3x-0.4;
(2)當x=7時,$\stackrel{∧}{y}$=1.7,
學生家庭月收入為7千元,預測該家庭每月支付其上學的費用1.7

點評 本題考查線性回歸方程的求解及應用,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.設(3x-1)15=a0+a1x+a2x2+…+akxk…+a14x14+a15x15求:
(1)$\sum_{k=0}^{15}$ak
(2)a4+a6+a8+a10+a12+a14;
(3)$\sum_{k=0}^{15}$(k+1)ak

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知圓O的半徑為定長為r,A是圓O所在平面上的一個定點,P是圓上任意一點,線段AP的垂直平分線L和直線OP相交于點M,當點P在圓上運動時,點M的軌跡可能是①點;②直線;③圓;④橢圓;⑤雙曲線;⑥拋物線.其中正確的是( 。
A.④⑤B.①③④⑤C.①②③④⑤D.①②③④⑤⑥

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.禽流感是家禽養(yǎng)殖業(yè)的最大威脅,為檢驗某種藥物預防禽流感的效果,取80只家禽進行對比試驗,得到如下丟失數(shù)據(jù)的列聯(lián)表:(其中c,d,M,N表示丟失的數(shù)據(jù)).
患病未患病總計
沒服用藥251540
服用藥cd40
總計MN80
工作人員曾記得3c=d.
(1)求出列聯(lián)表中數(shù)據(jù)c,d,M,N的值;
(2)能否在犯錯誤率不超過0.005的前提下認為藥物有效?
下面的臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=cosx的導數(shù)是(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知正方體的棱長為1,則其外接球的表面積為( 。
A.B.πC.$\frac{\sqrt{3}}{2}$πD.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知x與y之間的幾組數(shù)據(jù)如下表:
x 1 2 3 4 5 6
 y 0 2 1 34
假設根據(jù)上表所得線性回歸直線方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,則方程必過的點為( 。
A.(2.5,2)B.(2.5,3.5)C.(3.5,2.5)D.(3.5,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.[示范高中]定義在R上的偶函數(shù)f(x),其導函數(shù)為f′(x),當′x∈(-∞,0)時,都有$\frac{1}{x}$f(x)+f′(x)>0,若a=3f(3),b=(lnπ)f(lnπ),c=-2f(-2),則a,b,c的大小關系為( 。
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是2πcm3

查看答案和解析>>

同步練習冊答案