已知點(diǎn)M(1,-1),N(1,5),P(-2,2)都在圓C上,求圓C的方程.
【答案】分析:設(shè)出圓C的一般式方程為x2+y2+Dx+Ey+F=0,由已知的三個都在圓C上,將三點(diǎn)坐標(biāo)代入圓的方程,得到關(guān)于D,E及F的三元一次方程組,求出方程組的解集即可得到D,E及F的值,進(jìn)而確定出圓C的方程.
解答:解:設(shè)圓C的方程為:x2+y2+Dx+Ey+F=0,…(3分)
把M(1,-1),N(1,5),P(-2,2)三點(diǎn)坐標(biāo)代入得:
,…(9分)
則圓C的方程為:x2+y2-2x-4y-4=0.…(12分)
點(diǎn)評:此題考查了圓的一般式方程,以及待定系數(shù)法確定圓的方程,利用了方程的思想,是一道常考的基本題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是圓x2+y2=16上的一個動點(diǎn),過點(diǎn)P作D垂直于x軸,垂足為D,Q為線段PD的中點(diǎn).
(Ⅰ)求點(diǎn)Q的軌跡方程.
(Ⅱ)已知點(diǎn)M(1,1)為上述所求方程的圖形內(nèi)一點(diǎn),過點(diǎn)M作弦AB,若點(diǎn)M恰為弦AB的中點(diǎn),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
π
2
),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封一模)已知點(diǎn)M(1,0)是圓C:x2+y2-4x-2y=0內(nèi)一點(diǎn),則過點(diǎn)M的最長弦所在的直線方程是
x-y-1=0
x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(1,-1),N(1,5),P(-2,2)都在圓C上,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)一模)設(shè)A(xA,yA),B(xB,yB)為平面直角坐標(biāo)系上的兩點(diǎn),其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,則稱點(diǎn)B為點(diǎn)A的“相關(guān)點(diǎn)”,記作:B=i(A).
(Ⅰ)請問:點(diǎn)(0,0)的“相關(guān)點(diǎn)”有幾個?判斷這些點(diǎn)是否在同一個圓上,若在,寫出圓的方程;若不在,說明理由;
(Ⅱ)已知點(diǎn)H(9,3),L(5,3),若點(diǎn)M滿足M=i(H),L=i(M),求點(diǎn)M的坐標(biāo);
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)為一個定點(diǎn),點(diǎn)列{Pi}滿足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.

查看答案和解析>>

同步練習(xí)冊答案