求證:如果一個(gè)平面內(nèi)的兩條相交直線分別與另一個(gè)平面內(nèi)的兩條直線平行,那么這兩個(gè)平面平行.

答案:
解析:

  解:如圖,已知aα,bα,a∩b=A,cβ,dβ,且a∥c,b∥d.

  求證:α∥β.

  證明:∵a∥c,cβ,∴a∥β.

  同理,b∥β.又a∩b=A,aα,bα,∴α∥β.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如果一個(gè)平面內(nèi)的兩條相交直線分別與另一個(gè)平面內(nèi)的兩條直線平行,那么這兩個(gè)平面平行

已知aa,ba,a∩b=A,cb,db,且ac,bd

求證:ab

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如果一個(gè)平面內(nèi)的兩條相交直線分別與另一個(gè)平面內(nèi)的兩條直線平行,那么這兩個(gè)平面平行

已知aaba,a∩b=Acb,db,且ac,bd

求證:ab

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面幾何中,同垂直于一條直線的兩直線________.那么,類比到空間中有:(1)同垂直于一條直線的兩條直線平行,這個(gè)命題成立嗎?______.為什么?_______.(2)同垂直于一個(gè)平面的兩條直線_________.這個(gè)命題是__________(填:真、假)命題.原因是:已知a⊥平面α,b⊥平面α,求證:ab.假設(shè)b不平行于a,設(shè)bα=O,b′是經(jīng)過(guò)點(diǎn)O與直線_______平行的直線.∵a_______b′,aα ,?∴b′________α,?即經(jīng)過(guò)同一點(diǎn)O的兩條直線________、_______都垂直于平面α,這是不可能的.因此,________.這種證明的方法是________法.?

命題(2)的逆命題是:如果兩條平行直線中的一條垂直于一個(gè)平面,那么另一條也_________這個(gè)平面.用數(shù)學(xué)符號(hào)表示:已知a_____b,a_______平面α,求證:b______α.?

證明:設(shè)m是α內(nèi)的任意一條直線.∵a________α,mα,?

?∴a________m.又∵a_______b,∴________bm.又∵mα,m是_______,∴由線面垂直的__________可知b______α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知在銳角ΔABC中,角所對(duì)的邊分別為,且

(I )求角大;

(II)當(dāng)時(shí),求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線過(guò)點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面;

(2)設(shè)二面角的平面角為,若,求線段長(zhǎng)的取值范圍。

 


21.已知A,B是橢圓的左,右頂點(diǎn),,過(guò)橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實(shí)數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由;

(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案