下列四個(gè)命題:
①兩個(gè)相交平面有不在同一直線上的三個(gè)公交點(diǎn)
②經(jīng)過(guò)空間任意三點(diǎn)有且只有一個(gè)平面
③過(guò)兩平行直線有且只有一個(gè)平面
④在空間兩兩相交的三條直線必共面
其中正確命題的序號(hào)是
 
考點(diǎn):平面的基本性質(zhì)及推論
專(zhuān)題:空間位置關(guān)系與距離
分析:由公理3可判斷①,由公理2及其推論,可判斷②③,根據(jù)空間線線關(guān)系,可判斷④
解答: 解:①兩個(gè)相交平面的公交點(diǎn)一定在平面的交線上,故錯(cuò)誤;
②經(jīng)過(guò)空間不共線三點(diǎn)有且只有一個(gè)平面,故錯(cuò)誤;
③過(guò)兩平行直線有且只有一個(gè)平面,正確;
④在空間兩兩相交交點(diǎn)不重合的三條直線必共面,三線共點(diǎn)時(shí),三線可能不共面,故錯(cuò)誤,
故正確命題的序號(hào)是③,
故答案為:③
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面的基本性質(zhì)及推論,空間線線關(guān)系,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于給定的數(shù)列{cn},如果存在實(shí)常數(shù)p、q,使得cn+1=pcn+q對(duì)于任意n∈N*都成立,我們稱(chēng)數(shù)列{cn}是“優(yōu)美數(shù)列”.
(1)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“優(yōu)美數(shù)列”?若是,指出它對(duì)應(yīng)的實(shí)常數(shù)p、q,若不是,請(qǐng)說(shuō)明理由;
(2)已知數(shù)列{an}滿(mǎn)足a1=2,an+an+1=3•2n(n∈N*).若數(shù)列{an}是“優(yōu)美數(shù)列”,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在函數(shù)f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱(chēng)f(x)為“Л型函數(shù)”.則下列函數(shù):①F(x)=
x
;②g(x)=2x;③h(x)=lnx,x∈[2,+∞),其中是“Л型函數(shù)”的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有5本不同的書(shū),其中語(yǔ)文書(shū)2本,數(shù)學(xué)書(shū)2本,物理書(shū)1本.若將其并排擺放在書(shū)架的同一層上,則同一科目書(shū)都不相鄰的放法種數(shù)是
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,函數(shù)f(x)=x+
a
x
,g(x)=ex-1,若對(duì)任意的x1,x2∈(0,1],都有f(x1)≥g(x2)成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對(duì)應(yīng)值表:
X -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
F(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89
則函數(shù)f(x)至少有
 
個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

π
2
-
π
2
(sin3x+cos2x)dx的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)算法的偽代碼,則輸出的k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小朋友按如圖所示的規(guī)則練習(xí)數(shù)數(shù),1大拇指,2食指,3中指,4無(wú)名指,5小指,6無(wú)名指…一直數(shù)到2013時(shí),對(duì)應(yīng)的指頭是
 
(填指頭的名稱(chēng)).

查看答案和解析>>

同步練習(xí)冊(cè)答案