分析 根據(jù)題意,由數(shù)列{an}的前四項(xiàng),歸納分析可以推測(cè)an=$\sqrt{\frac{n-1}{n+1}}$,驗(yàn)證n=5時(shí)是否成立,即可得答案.
解答 解:根據(jù)題意,數(shù)列{an}的前四項(xiàng)依次為$0,\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2},\frac{{\sqrt{15}}}{5}$,
則有a1=$\sqrt{\frac{1-1}{1+1}}$=0,
a2=$\sqrt{\frac{2-1}{2+1}}$=$\sqrt{\frac{1}{3}}$=$\frac{\sqrt{3}}{3}$,
a3=$\sqrt{\frac{3-1}{3+1}}$=$\sqrt{\frac{2}{4}}$=$\frac{\sqrt{2}}{2}$,
a4=$\sqrt{\frac{4-1}{4+1}}$=$\sqrt{\frac{3}{5}}$=$\frac{\sqrt{15}}{5}$,
則可以推測(cè)an=$\sqrt{\frac{n-1}{n+1}}$,
當(dāng)n=5時(shí),a5=$\sqrt{\frac{5-1}{5+1}}$=$\sqrt{\frac{4}{6}}$=$\frac{\sqrt{6}}{3}$,符合題意;
故答案為:$\sqrt{\frac{n-1}{n+1}}$.
點(diǎn)評(píng) 本題考查歸納推理的應(yīng)用,關(guān)鍵是分析該數(shù)列的前5項(xiàng),發(fā)現(xiàn)變化的規(guī)律.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [15°,45°] | B. | [15°,75°] | C. | [30°,60°] | D. | [0°,90°] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2),4 | B. | (1,-2),2 | C. | (-1,2),2 | D. | (1,-2),4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈(-∞,0),x3+x<0 | B. | ?x∈(-∞,0),x3+x≥0 | ||
C. | $?{x_0}∈[0,\;+∞),\;x_0^3+{x_0}<0$ | D. | $?{x_0}∈[0,\;+∞),\;x_0^3+{x_0}≥0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分?jǐn)?shù)區(qū)間 | [50,70] | [70,90] | [90,110] | [110,130] | [130,150] |
人數(shù) | 2 | 8 | 32 | 38 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2i | B. | 2i | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 16+32$\sqrt{2}$ | C. | 16+8$\sqrt{2}$ | D. | 32 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com