精英家教網 > 高中數學 > 題目詳情
1.已知i是虛數單位,則$\frac{(-1+i)(1+i)}{{i}^{3}}$=(  )
A.-2iB.2iC.-iD.i

分析 直接利用復數代數形式的乘除運算化簡得答案.

解答 解:$\frac{(-1+i)(1+i)}{{i}^{3}}$=$\frac{-2}{-i}=\frac{-2i}{-{i}^{2}}=-2i$,
故選:A.

點評 本題考查了復數代數形式的乘除運算,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

11.直線l1:y=kx-1與直線l2:x+y-1=0的交點位于第一象限則k的范圍為(1,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知數列{an}的前五項依次為$0,\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2},\frac{{\sqrt{15}}}{5},\frac{{\sqrt{6}}}{3}$,請參考前四項歸納猜想出一個通項公式,且第五項也滿足猜想,你的猜想結果是an=$\sqrt{\frac{n-1}{n+1}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知函數f(x)=sin(ωx+2φ)-2sinφcos(ωx+φ)(ω>0,φ∈R)在(π,$\frac{3π}{2}$)上單調遞減,則ω的取值范圍是( 。
A.(0,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,1]D.[$\frac{1}{2}$,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.在△ABC中,角A、B、C所對的邊分別為a、b、c,且acosB+bcosA=$\sqrt{3}$,△ABC的外接圓面積為π,則△ABC面積的最大值為$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.若函數y=2sinωx(ω>0)在[-$\frac{π}{3}$,$\frac{π}{4}$]上的最小值是-2,但最大值不是2,則ω的取值范圍是(  )
A.(0,2)B.[$\frac{3}{2}$,2)C.(0,$\frac{3}{2}$]D.[2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.2016年美國總統(tǒng)大選過后,有媒體從某公司的全體員工中隨機抽取了200人,對他們的投票結果進行了統(tǒng)計(不考慮棄權等其他情況),發(fā)現(xiàn)支持希拉里的一共有95人,其中女員工55人,支持特朗普的男員工有60人.
(Ⅰ)根據已知條件完成下面的2×2列聯(lián)表:
支持希拉里支持特朗普合計
男員工
女員工
合計
(Ⅱ)根據表格中的數據,是否有95%的把握認為投票結果與性別有關?
附:
P(K2≥k00.150.100.050.0250.0100.0050.001
K02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知函數f(x)=|x-4|,g(x)=a|x|,a∈R.
(Ⅰ)當a=2時,解關于x的不等式f(x)>2g(x)+1;
(Ⅱ)若不等式f(x)≥g(x)-4對任意x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.《最強大腦》是江蘇衛(wèi)視推出國內首檔大型科學類真人秀電視節(jié)目,該節(jié)目集結了國內外最頂尖的腦力高手,堪稱腦力界的奧林匹克,某校為了增強學生的記憶力和辨識力也組織了一場類似《最強大腦》的PK賽,A、B兩隊各由4名選手組成,每局兩隊各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分,假設每局比賽兩隊選手獲勝的概率均為0.5,且各局比賽結果相互獨立.
(1)求比賽結束時A隊的得分高于B隊的得分的概率;
(2)求比賽結束時B隊得分X的分布列和期望.

查看答案和解析>>

同步練習冊答案