19.方程ex-x-6=0的一個根所在的區(qū)間為(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 本題考查的是方程零點存在的大致區(qū)間的判斷問題.在解答時,應先將方程的問題轉(zhuǎn)化為函數(shù)零點大致區(qū)間的判斷問題,結(jié)合零點存在性定理即可獲得解答.

解答 解:令f(x)=ex-x-6,
∵f(2)=7.39-8<0,f(3)=20.09-9>0,
∴方程ex-x-6=0的一個根所在的區(qū)間為(2,3).
故選:D.

點評 本題考查的是方程零點存在的大致區(qū)間的判斷問題.在解答的過程當中充分體現(xiàn)了函數(shù)與方程的思想、問題轉(zhuǎn)化的思想以及數(shù)據(jù)處理的能力.值得同學們體會和反思.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知x>1,y>2,且xy=2x+y+6,則x+2y的最小值是(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=3tan($\frac{x}{2}$+$\frac{π}{3}$)的最小正周期為2π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.為得到函數(shù)y=-sin2x的圖象,可將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向左平移$\frac{π}{6}$個單位
C.向右平移$\frac{π}{3}$個單位D.向右平移$\frac{2π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列命題中為真命題的是( 。
A.命題“若α=β,則tanα=tanβ”的逆否命題為假命題
B.“x>1”是“x2-1>0”的必要不充分條件
C.“m>0>n”是“$\frac{1}{m}$>$\frac{1}{|n|}$”的充分不必要條件
D.命題“?a>1,a2+2a-3<0”的否定是:“?a≤1,a2+2a-3≥0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設命題p:函數(shù)y=kx+1在R上是增函數(shù),命題q:?x∈R,x2+(2k-3)x+1=0,如果p∧q是假命題,p∨q是真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$ (t為參數(shù)),若以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-$\frac{π}{4}$).
(1)求直線l的傾斜角和曲線C的直角坐標方程;
(2)若直線l與曲線C交于A,B兩點,設點P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合M={x|y=$\sqrt{x-1}}$},N={y|y=$\sqrt{x-1}$},則M與N的關(guān)系為( 。
A.M=NB.M⊆NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,b=3,c=6,B=45°,則此三角形解的情況是( 。
A.一解B.兩解C.一解或兩解D.無解

查看答案和解析>>

同步練習冊答案