如圖,在正三棱錐ABCD中,∠BAC=30°,ABa,平行于AD、BC的截面EFGH分別交ABBD、DC、CA于點(diǎn)E、FG、H

(1)判定四邊形EFGH的形狀,并說明理由.

(2)設(shè)P是棱AD上的點(diǎn),當(dāng)AP為何值時(shí),平面PBC⊥平面EFGH,請(qǐng)給出證明.

答案:
解析:

  (1)證明:∵AD∥面EFGH,面ACD∩面EFGH=HG,AD面ACD

  ∴AD∥HG

  同理EFFG,∴EFGH是平行四邊形

  ∵ABCD是正三棱錐,∴A在底面上的射影O是△BCD的中心,

  ∴DOBC,∴ADBC,

  ∴HGEH,四邊形EFGH是矩形

  (2)作CPADP點(diǎn),連結(jié)BP,∵ADBC,∴AD⊥面BCP

  ∵HGAD,∴HG⊥面BCP,HGEFGH.面BCP⊥面EFGH

  在Rt△APC中,∠CAP=30°,ACa,∴APa


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正三棱錐A-BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分別交AB、BD、DC、CA于點(diǎn)E、F、G、H.
(1)判定四邊形EFGH的形狀,并說明理由.
(2)設(shè)P是棱AD上的點(diǎn),當(dāng)AP為何值時(shí),平面PBC⊥平面EFGH,請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱錐A-BCD中,M、N分別是AD、CD的中點(diǎn),BM⊥MN,則正三棱錐的側(cè)面與底面所成角的正切值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱錐A-BCD中,底面正三角形BCD的邊長(zhǎng)為2,點(diǎn)E是AB的中點(diǎn),AC⊥DE,則正三棱錐A-BCD的體積是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱錐A-BCD中,E、F分別是AB、BC的中點(diǎn),EF⊥DE,且BC=1,則正三棱錐A-BCD的體積是
2
24
2
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年內(nèi)蒙古高三第一次月考理科數(shù)學(xué)卷 題型:選擇題

如圖,在正三棱錐ABCD中,點(diǎn)E、F分別是AB、BC的中點(diǎn),,則ABCD的體積為            (    )

    A.         B.   

    C.         D.

                                                              

 

查看答案和解析>>

同步練習(xí)冊(cè)答案