在△ABC中,角A,B,C所對的邊分別是a,b,c,設平面向量e1=,e2=,且e1⊥e2.
(1)求cos 2A的值;
(2)若a=2,求△ABC的周長L的取值范圍.
(1)-(2)(4,6]
【解析】(1)∵e1⊥e2,∴e1·e2=·=2cos C·a+·1=0,
即acos C+-b=0∴2acos C+c-2b=0.
根據(jù)正弦定理得:2sin Acos C+sin C=2sin B,
∴2sin Acos C+sin C=2sin(A+C),
∴2sin Acos C+sin C=2sin Acos C+2cos Asin C,
∴2cos Asin C=sin C,∵sin C≠0,
∴cos A=,A∈(0,π)∴A=∴cos 2A=cos=-.
(2)由余弦定理得
a2=b2+c2-2bccos A=b2+c2-bc=(b+c)2-3bc≥(b+c)2-=即b+c≤=4,當且僅當b=c=2時取等號,由構成三角形的條件知b+c>a=2,即b+c∈(2,4]∴L=a+b+c∈(4,6].
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練1練習卷(解析版) 題型:選擇題
同時滿足兩個條件:①定義域內(nèi)是減函數(shù);②定義域內(nèi)是奇函數(shù)的函數(shù)是( ).
A.f(x)=-x|x| B.f(x)=x3
C.f(x)=sin x D.f(x)=
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習5-1空間幾何體與點等練習卷(解析版) 題型:解答題
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點E在線段AD上,且CE∥AB.
(1)求證:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習4-2數(shù)列求和與數(shù)列的綜合應用練習卷(解析版) 題型:選擇題
已知等差數(shù)列{an}的前n項和為Sn,a5=5,S5=15,則數(shù)列的前200項和為 ( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習4-1等差數(shù)列與等比數(shù)列練習卷(解析版) 題型:選擇題
已知等比數(shù)列{an}中,a1=1,且4a2,2a3,a4成等差數(shù)列,則a2+a3+a4等于 ( ).
A.1 B.4 C.14 D.15
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習3-2解三角形練習卷(解析版) 題型:選擇題
如圖,在四邊形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,則BC的長為( ).
A.8 B.9
C.14 D.8
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習3-1三角函數(shù)與三角恒等變換練習卷(解析版) 題型:填空題
已知<β<α<π,sin(α+β)=,sin=,則cos=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習2-1函數(shù)的概念與基本初等函數(shù)練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=,x∈[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3的最小值為h(a).
(1)求h(a);
(2)是否存在實數(shù)m、n同時滿足下列條件:
①m>n>3;
②當h(a)的定義域為[n,m]時,值域為[n2,m2]?若存在,求出m、n的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練選修4-4練習卷(解析版) 題型:選擇題
極坐標方程ρ=cos θ和參數(shù)方程 (t為參數(shù))所表示的圖形分別是( ).
A.直線、直線 B.直線、圓 C.圓、圓 D.圓、直線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com