【題目】如圖,在四棱錐中,平面平面,是棱的中點(diǎn),,,

求證:平面;

若二面角大于,求四棱錐體積的取值范圍.

【答案】(Ⅰ)見(jiàn)解析(Ⅱ)

【解析】

先推導(dǎo)出,從而平面,可得,結(jié)合,利用線(xiàn)面垂直的判定定理能證明平面為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,設(shè),分別求出平面的法向量與平面的法向量,由二面角大于,可得,進(jìn)而能求出四棱錐體積的取值范圍.

平面平面ABCD,E是棱PC的中點(diǎn),

,,

平面PAD,

,,

平面ABCD

A為原點(diǎn),ABx軸,ADy軸,APz軸,

建立空間直角坐標(biāo)系,

設(shè),則0,,2,,0,

2,,1,

2,,0,1,,

設(shè)平面BDP的法向量y,

,取,得1,,

設(shè)平面BDE的法向量b,

,取,得1,,

二面角大于

,

解得,

四棱錐體積

四棱錐體積的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司針對(duì)企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬(wàn)元.保險(xiǎn)公司把職工從事的所有崗位共分為、、三類(lèi)工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類(lèi)工種的每賠付頻率如下表(并以此估計(jì)賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤(rùn)都不得超過(guò)保費(fèi)的20%,試分別確定各類(lèi)工種每張保單保費(fèi)的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類(lèi)工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購(gòu)買(mǎi)一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類(lèi)保險(xiǎn)上限購(gòu)買(mǎi),試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,河的兩岸分別有生活小區(qū),其中,三點(diǎn)共線(xiàn),的延長(zhǎng)線(xiàn)交于點(diǎn),測(cè)得,,,,,若以所在直線(xiàn)分別為軸建立平面直角坐標(biāo)系則河岸可看成是曲線(xiàn)(其中是常數(shù))的一部分,河岸可看成是直線(xiàn)(其中為常數(shù))的一部分.

1)求的值.

2)現(xiàn)準(zhǔn)備建一座橋,其中分別在上,且的橫坐標(biāo)為.寫(xiě)出橋的長(zhǎng)關(guān)于的函數(shù)關(guān)系式,并標(biāo)明定義域;當(dāng)為何值時(shí),取到最小值?最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要條件;

(2)求實(shí)數(shù)a的一個(gè)值,使它成為MP={x|5<x≤8}的一個(gè)充分但不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種蔬菜從1月1日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時(shí)間(單位:10天)的數(shù)據(jù)如下表:

時(shí)間

5

11

25

種植成本

15

10.8

15

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,中(其中),選取一個(gè)合適的函數(shù)模型描述該蔬菜種植成本與上市時(shí)間的變化關(guān)系;

(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時(shí)的上市時(shí)間及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn)

(Ⅰ)求橢圓的方程.

(Ⅱ)若 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線(xiàn)垂直于軸,試判斷直線(xiàn)的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{xn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且x1x2=3,x3x2=2.

(1)求數(shù)列{xn}的通項(xiàng)公式;

(2)如圖,在平面直角坐標(biāo)系xOy中,依次連接點(diǎn)P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折線(xiàn)P1P2Pn+1,求由該折線(xiàn)與直線(xiàn)y=0,xx1xxn+1所圍成的區(qū)域的面積Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了改善居民的休閑娛樂(lè)活動(dòng)場(chǎng)所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、,要求點(diǎn)的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.

1)設(shè),試求的周長(zhǎng)關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;

2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問(wèn)如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案