【題目】如圖,在四棱錐中,平面平面,,是棱的中點(diǎn),,,.
Ⅰ求證:平面;
Ⅱ若二面角大于,求四棱錐體積的取值范圍.
【答案】(Ⅰ)見(jiàn)解析(Ⅱ)
【解析】
Ⅰ先推導(dǎo)出,從而平面,可得,結(jié)合,利用線(xiàn)面垂直的判定定理能證明平面;Ⅱ以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,設(shè),分別求出平面的法向量與平面的法向量,由二面角大于,可得,進(jìn)而能求出四棱錐體積的取值范圍.
Ⅰ平面平面ABCD,,E是棱PC的中點(diǎn),
,,.
,平面PAD,
,,
平面ABCD.
Ⅱ以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,
建立空間直角坐標(biāo)系,
設(shè),則0,,2,,0,,
2,,1,,
2,,0,,1,,
設(shè)平面BDP的法向量y,,
則,取,得1,,
設(shè)平面BDE的法向量b,,
則,取,得1,,
二面角大于,
,
解得,
,
四棱錐體積
四棱錐體積的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司針對(duì)企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬(wàn)元.保險(xiǎn)公司把職工從事的所有崗位共分為、、三類(lèi)工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類(lèi)工種的每賠付頻率如下表(并以此估計(jì)賠付概率).
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤(rùn)都不得超過(guò)保費(fèi)的20%,試分別確定各類(lèi)工種每張保單保費(fèi)的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類(lèi)工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購(gòu)買(mǎi)一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類(lèi)保險(xiǎn)上限購(gòu)買(mǎi),試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,河的兩岸分別有生活小區(qū)和,其中,三點(diǎn)共線(xiàn),與的延長(zhǎng)線(xiàn)交于點(diǎn),測(cè)得,,,,,若以所在直線(xiàn)分別為軸建立平面直角坐標(biāo)系則河岸可看成是曲線(xiàn)(其中是常數(shù))的一部分,河岸可看成是直線(xiàn)(其中為常數(shù))的一部分.
(1)求的值.
(2)現(xiàn)準(zhǔn)備建一座橋,其中分別在上,且,的橫坐標(biāo)為.寫(xiě)出橋的長(zhǎng)關(guān)于的函數(shù)關(guān)系式,并標(biāo)明定義域;當(dāng)為何值時(shí),取到最小值?最小值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實(shí)數(shù)a的一個(gè)值,使它成為M∩P={x|5<x≤8}的一個(gè)充分但不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜從1月1日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時(shí)間(單位:10天)的數(shù)據(jù)如下表:
時(shí)間 | 5 | 11 | 25 |
種植成本 | 15 | 10.8 | 15 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,,中(其中),選取一個(gè)合適的函數(shù)模型描述該蔬菜種植成本與上市時(shí)間的變化關(guān)系;
(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時(shí)的上市時(shí)間及最低種植成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線(xiàn)垂直于軸,試判斷直線(xiàn)的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{xn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且x1+x2=3,x3-x2=2.
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)如圖,在平面直角坐標(biāo)系xOy中,依次連接點(diǎn)P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折線(xiàn)P1P2…Pn+1,求由該折線(xiàn)與直線(xiàn)y=0,x=x1,x=xn+1所圍成的區(qū)域的面積Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了改善居民的休閑娛樂(lè)活動(dòng)場(chǎng)所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、和,要求點(diǎn)是的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.
(1)設(shè),試求的周長(zhǎng)關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問(wèn)如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com