【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;
(2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對(duì)理科題的概率均為,答對(duì)文科題的概率均為,若每題答對(duì)得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正數(shù)數(shù)列的前項(xiàng)和為,且滿足;在數(shù)列中,
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為. 若對(duì)任意,存在實(shí)數(shù),使恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mln(x+1),g(x)= (x>﹣1). (Ⅰ)討論函數(shù)F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開帷幕.為了了解喜愛足球運(yùn)動(dòng)是否與性別有關(guān),某體育臺(tái)隨機(jī)抽取100名觀眾進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表.
(1)將列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜愛足球運(yùn)動(dòng)與性別有關(guān)?
(2)在不喜愛足球運(yùn)動(dòng)的觀眾中,按性別分別用分層抽樣的方式抽取6人,再從這6人中隨機(jī)抽取2人參加一臺(tái)訪談節(jié)目,求這2人至少有一位男性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
男 | 女 | |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。
(2)能否在犯錯(cuò)誤的概率不超過百分之一的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司按現(xiàn)有能力,每月收入為70萬元,公司分析部門測(cè)算,若不進(jìn)行改革,入世后因競(jìng)爭(zhēng)加劇收入將逐月減少.分析測(cè)算得入世第一個(gè)月收入將減少3萬元,以后逐月多減少2萬元,如果進(jìn)行改革,即投入技術(shù)改造300萬元,且入世后每月再投入1萬元進(jìn)行員工培訓(xùn),則測(cè)算得自入世后第一個(gè)月起累計(jì)收入與時(shí)間(以月為單位)的關(guān)系為,且入世第一個(gè)月時(shí)收入將為90萬元,第二個(gè)月時(shí)累計(jì)收入為170萬元,問入世后經(jīng)過幾個(gè)月,該公司改革后的累計(jì)純收入高于不改革時(shí)的累計(jì)純收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)(2)兩個(gè)班聯(lián)合開展“詩詞大會(huì)進(jìn)校園,國學(xué)經(jīng)典潤心田”古詩詞競(jìng)賽主題班會(huì)活動(dòng),主持人從這兩個(gè)班分別隨機(jī)選出20名同學(xué)進(jìn)行當(dāng)場(chǎng)測(cè)試,他們的測(cè)試成績按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計(jì)如圖(單位:分):
高一(2)班20名學(xué)生成績莖葉圖:
4 | 5 |
5 | 2 |
6 | 4 5 6 8 |
7 | 0 5 5 8 8 8 8 9 |
8 | 0 0 5 5 |
9 | 4 5 |
(Ⅰ)分別計(jì)算兩個(gè)班這20名同學(xué)的測(cè)試成績?cè)赱80,90)的頻率,并補(bǔ)全頻率分布直方圖;
(Ⅱ)分別從兩個(gè)班隨機(jī)選取1人,設(shè)這兩人中成績?cè)赱80,90)的人數(shù)為X,求X的分布列(頻率當(dāng)作概率使用).
(Ⅲ)運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)分析比較兩個(gè)班學(xué)生的古詩詞水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年入冬以來,各地霧霾天氣頻發(fā),頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對(duì)機(jī)動(dòng)車更是出臺(tái)了各類限行措施,為分析研究車流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時(shí)間段車流量與的數(shù)據(jù)如下表:
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量(萬輛) | 50 | 51 | 54 | 57 | 58 |
的濃度(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)請(qǐng)根據(jù)上述數(shù)據(jù),在下面給出的坐標(biāo)系中畫出散點(diǎn)圖;
(2)試判斷與是否具有線性關(guān)系,若有請(qǐng)求出關(guān)于的線性回歸方程,若沒有,請(qǐng)說明理由;
(3)若周六同一時(shí)間段的車流量為60萬輛,試根據(jù)(2)得出的結(jié)論,預(yù)報(bào)該時(shí)間段的的濃度(保留整數(shù)).
參考公式: ,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com