已知函數(shù)f(x)=x3+ax2+bx.

(1)若函數(shù)y=f(x)在x=2處有極值-6,求y=f(x)的單調(diào)遞減區(qū)間;

(2)若y=f(x)的導(dǎo)數(shù)f′(x)對x∈[-1,1]都有f′(x)≤2,求的取值范圍.

 

(1) (2)(-∞,-2)∪[1,+∞)

【解析】(1)f′(x)=3x2+2ax+b,

依題意有,即

解得,∴f′(x)=3x2-5x-2.

由f′(x)<0,得-<x<2.

∴y=f(x)的單調(diào)遞減區(qū)間是

(2)由,得

不等式組確定的平面區(qū)域如圖陰影部分所示:

,得

∴Q點的坐標(biāo)為(0,-1).

設(shè)z=,則z表示平面區(qū)域內(nèi)的點(a,b)與點

P(1,0)連線的斜率.

∵kPQ=1,由圖可知z≥1或z<-2,

∈(-∞,-2)∪[1,+∞).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科三角函數(shù)的概念(解析版) 題型:選擇題

已知角的終邊上一點),且,則的值是(  )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(四)(解析版) 題型:選擇題

一個正三棱柱的側(cè)棱長和底面邊長相等,體積為2,它的三視圖中的俯視圖如圖所示,側(cè)視圖是一個矩形,則這個矩形的面積是(  )

A.4 B.2 C.2 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(六)(解析版) 題型:選擇題

函數(shù)y=,x∈(-π,0)∪(0,π)的圖象可能是下列圖象中的(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(六)(解析版) 題型:選擇題

下面四個圖象中,有一個是函數(shù)f(x)=x3+ax2+(a2-1)x+1(a∈R)的導(dǎo)函數(shù)y=f′(x)的圖象,則f(-1)等于(  )

A. B.- C. D.-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(五)(解析版) 題型:填空題

如圖,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,BC邊上存在點Q,使得PQ⊥QD,則實數(shù)a的取值范圍是________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(五)(解析版) 題型:選擇題

已知函數(shù)f(x)=sin x-x(x∈[0,π]),那么下列結(jié)論正確的是(  )

A.f(x)在上是增函數(shù)

B.f(x)在上是減函數(shù)

C.?x∈[0,π],f(x)>f()

D.?x∈[0,π],f(x)≤f()

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(二)(解析版) 題型:填空題

函數(shù)f(x)=x3-x2+ax-5在區(qū)間[-1,2]上不單調(diào),則實數(shù)a的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(一)(解析版) 題型:填空題

已知定義在R上的偶函數(shù)滿足:f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時,y=f(x)單調(diào)遞減,給出以下四個命題:

①f(2)=0;

②x=-4為函數(shù)y=f(x)圖象的一條對稱軸;

③函數(shù)y=f(x)在[8,10]上單調(diào)遞增;

④若方程f(x)=m在[-6,-2]上的兩根為x1,x2,則x1+x2=-8.

以上命題中所有正確命題的序號為________.

 

查看答案和解析>>

同步練習(xí)冊答案