已知a>0且a≠1,函數(shù)f(x)=ax+x-4的零點為m,函數(shù)g(x)=1ogax+x-4的零點為n,則
1
m
+
2
n
的最小值為( 。
分析:構(gòu)建函數(shù)F(x)=ax,G(x)=logax,h(x)=4-x,確定m+n=4,再利用“1”的代換,結(jié)合基本不等式,即可求得最小值.
解答:解:由題意,構(gòu)建函數(shù)F(x)=ax,G(x)=logax,h(x)=4-x,
則h(x)與F(x),G(x)的交點A,B的橫坐標(biāo)分別為m、n,
注意到F(x)=ax,G(x)=logax,關(guān)于直線y=x對稱,可以知道A,B關(guān)于y=x對稱,
由于y=x與y=4-x交點的橫坐標(biāo)為2,
∴m+n=4,
1
m
+
2
n
=
1
4
(
1
m
+
2
n
)(m+n)
=
1
4
(3+
n
m
+
2m
n
)
1
4
(3+2
n
m
2m
n
)
=
1
4
(3+2
2
)
,當(dāng)且僅當(dāng)
2
m=n時取等號,
故選D.
點評:本題考查函數(shù)的零點,考查函數(shù)的最值,考查基本不等式的運用,考查學(xué)生分析解決問題的能力,確定m+n的值,利用“1”的代換是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,設(shè)p:函數(shù)y=ax在R上單調(diào)遞增,q:設(shè)函數(shù)y=
2x-2a,(x≥2a)
2a,(x<2a)
,函數(shù)y≥1恒成立,若p∧q為假,p∨q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時的k的取值范圍為
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:普陀區(qū)二模 題型:解答題

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案