A. | (-∞,0) | B. | (-∞,1) | C. | $({\frac{1}{3},1})$ | D. | $({-\frac{1}{3},\frac{1}{3}})$ |
分析 函數(shù)f(x)=$\frac{x}{1+|x|}$為奇函數(shù),分析函數(shù)的單調(diào)性,可將f(x)>f(2x-1)化為:x>2x-1,解得答案.
解答 解:函數(shù)f(x)=$\frac{x}{1+|x|}$為奇函數(shù),
當(dāng)x≥0時(shí),f(x)=$\frac{x}{1+x}$=1+$\frac{-1}{1+x}$為增函數(shù),
故函數(shù)f(x)在R上為增函數(shù),
故f(x)>f(2x-1)可化為:
x>2x-1,
解得:x∈(-∞,1),
故選:B
點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)的奇偶性,函數(shù)的單調(diào)性,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{{-1,\frac{1}{2}}\right\}$ | B. | $\left\{{-\frac{1}{2},1}\right\}$ | C. | $\left\{{-1,0,\frac{1}{2}}\right\}$ | D. | $\left\{{-\frac{1}{2},0,1}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12000元 | B. | 12500元 | C. | 15000元 | D. | 20000元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 30 | C. | 20 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com