17.設(shè)函數(shù)f(x)=$\frac{x}{1+|x|}$,則使得f(x)>f(2x-1)成立的x的取值范圍是( 。
A.(-∞,0)B.(-∞,1)C.$({\frac{1}{3},1})$D.$({-\frac{1}{3},\frac{1}{3}})$

分析 函數(shù)f(x)=$\frac{x}{1+|x|}$為奇函數(shù),分析函數(shù)的單調(diào)性,可將f(x)>f(2x-1)化為:x>2x-1,解得答案.

解答 解:函數(shù)f(x)=$\frac{x}{1+|x|}$為奇函數(shù),
當(dāng)x≥0時(shí),f(x)=$\frac{x}{1+x}$=1+$\frac{-1}{1+x}$為增函數(shù),
故函數(shù)f(x)在R上為增函數(shù),
故f(x)>f(2x-1)可化為:
x>2x-1,
解得:x∈(-∞,1),
故選:B

點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)的奇偶性,函數(shù)的單調(diào)性,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A={-1,2},B={x|mx+1=0},若A∪B=A,則實(shí)數(shù)m的取值所成的集合是(  )
A.$\left\{{-1,\frac{1}{2}}\right\}$B.$\left\{{-\frac{1}{2},1}\right\}$C.$\left\{{-1,0,\frac{1}{2}}\right\}$D.$\left\{{-\frac{1}{2},0,1}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.旅行社為去廣西桂林的某旅游團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為10000元,旅游團(tuán)中的每人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅游團(tuán)的人數(shù)在20或20以下,飛機(jī)票每人收費(fèi)800元;若旅游團(tuán)的人數(shù)多于20,則實(shí)行優(yōu)惠方案,每多一人,機(jī)票費(fèi)每張減少10元,但旅游團(tuán)的人數(shù)最多為75,則該旅行社可獲得利潤的最大值為( 。
A.12000元B.12500元C.15000元D.20000元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\underset{lim}{x→0}$$\frac{sin2x}{ax}$=$\frac{2}{3}$,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}單調(diào)遞增,且滿足a3a5=45,a2+a6=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=2${\;}^{{a}_{n}+1}$,數(shù)列{bn}的前n項(xiàng)和為Sn,求使|$\frac{4}{3}$+Sn|>$\frac{1000}{3}$成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知U=R,A={x|-5≤x<1},B={x|-2<x≤2},P={x|x≤-1或x≥$\frac{3}{2}$},求:
(1)A∪B;        
(2)(A∩B)∩(∁UP).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.為了解1500名學(xué)生對學(xué)校教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為50的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔k為( 。
A.40B.30C.20D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.等差數(shù)列{an}中,a3=4,a7=16,則a11=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:x2+4y2=16,點(diǎn)M(2,1).
(1)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
(2)求通過M點(diǎn)且被這點(diǎn)平分的弦所在的直線方程.

查看答案和解析>>

同步練習(xí)冊答案