16.下列各式的大小關系正確的是(  )
A.sin11°>sin168°B.sin194°<cos160°
C.tan(-$\frac{π}{5}$)<tan(-$\frac{3π}{7}$)D.cos(-$\frac{15π}{8}$)>cos$\frac{14π}{9}$

分析 利用誘導公式化簡,通過三角函數(shù)線,比較大小即可.

解答 解:sin11°>sin168°=sin12°,不正確;
sin194°=-sin14°<0,cos160°=-cos20°<-sin20°.∵-sin20°<-sin10°,
∴sin194°<cos160°不正確.
tan(-$\frac{π}{5}$)=-tan$\frac{π}{5}$<0,tan(-$\frac{3π}{7}$)=-tan$\frac{3π}{7}$<0,又tan$\frac{π}{5}$<tan$\frac{3π}{7}$,所以tan(-$\frac{π}{5}$)>tan(-$\frac{3π}{7}$),所以C不正確.
∵2π>$\frac{15π}{8}$>$\frac{14π}{9}$$>\frac{3}{2}π$,∴cos$\frac{15π}{8}$>cos$\frac{14π}{9}$,可得cos(-$\frac{15π}{8}$)>cos$\frac{14π}{9}$,所以D正確.
故選:D.

點評 本題考查三角函數(shù)線以及誘導公式的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象與X軸的交點中,相鄰兩個交點之間的距離為$\frac{π}{2}$.若M($\frac{2π}{3}$,-2)為圖象上一個最低點.
(1)求f(x)的解析式;
(2)求函數(shù)y=f(x)圖象的對稱軸方程和對稱中心坐標.
(3)求f(x)的單減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若cos2x>sin2x,x∈[0,π],則x的取值范圍是( 。
A.[0,$\frac{π}{4}$)∪[$\frac{π}{2}$,$\frac{3}{4}$π]B.[0,$\frac{π}{4}$)∪($\frac{3}{4}π$,π]C.[0,$\frac{π}{4}$)∪($\frac{π}{2}$,$\frac{3}{4}$π]D.[$\frac{π}{2}$,π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.把復數(shù)z的共軛復數(shù)記作$\overline z$,若z=1+i,i為虛數(shù)單位,則$|{(1+z)•\overline z}|$=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知不等式|x-$\frac{1}{2}$|≤$\frac{3}{2}$的解集為M,不等式4x-x2>0的解集為N,則M∩N=( 。
A.(0,2]B.[-1,0)C.[2,4)D.[1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的定義域為R,值域為[-4,8],圖象經過點(0,5),直線x=$\frac{π}{6}$是其圖象的一條對稱軸,且f(x)在($\frac{π}{3}$,$\frac{π}{2}$)上單調遞減.
(I)求函數(shù)f(x)的表達式.
(Ⅱ)已知α∈($\frac{π}{6}$,$\frac{π}{2}$),且f(α)=4,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.將函數(shù)f(x)=cos(2x+$\frac{π}{6}$)的圖象沿x向右平移$\frac{π}{6}$個單位得到函數(shù)y=g(x)的圖象,若P(x0,$\frac{1}{2}$)是函數(shù)y=g(x)的圖象上一點,則sin($\frac{2π}{3}$-2x0)=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.數(shù)列{an}為等比數(shù)列,Sn是數(shù)列{an}的前n項和,且Sn>0,a6是a5、a4的等差中項,則數(shù)列{an}的公比q為( 。
A.-$\frac{1}{2}$或1B.$\frac{1}{2}$或1C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)y=$\frac{lg(1-tanx)}{\sqrt{1-2sinx}}$的定義域是{x|$-\frac{π}{2}+2kπ<x<\frac{π}{6}+2kπ$或$\frac{5π}{6}+2kπ<x<\frac{5π}{4}+2kπ,k∈Z$}.

查看答案和解析>>

同步練習冊答案