如圖所示,在三棱柱ABC-A1B1C1中,AC=BC,D為AB的中點(diǎn),求證:BC1∥面CA1D.
考點(diǎn):直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:要證BC1∥平面CA1D,必須證明BC1∥平面CA1D內(nèi)的一條直線,因而連接AC1與A1C的交點(diǎn)E與D,證明即可.
解答: 證明:連接BC1,連接AC1交A1C于E,連接DE,E是AC1中點(diǎn),
D是AB中點(diǎn),則DE∥BC1,
又DE?面CA1D1BC1∉面CA1D1
∴BC1∥面CA1D
點(diǎn)評(píng):本題考查棱柱的結(jié)構(gòu)特征,考查體積計(jì)算,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2+3x-2
x+1
,求值域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2x+
1
x
n展開式中所有的項(xiàng)的系數(shù)為243.
(Ⅰ)求n的值;
(Ⅱ)求展開式中x2項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點(diǎn)A(2,-1),圓心在直線y=-2x上,且與直線x+y-1=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=sin
2
(n∈N*),則a2014-a2015的值為( 。
A、1B、2C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積(  )
A、4+
3
B、8+
π
3
C、8+
3
D、8+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x不等式:|ax+3|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx(a∈R)
(1)若函數(shù)f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向高為H的圓錐形漏斗注入化學(xué)溶液(漏斗下方口暫時(shí)關(guān)閉),注入溶液量V與溶液深度h的函數(shù)圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案