直線a ⊥平面,b∥,則a與b的關(guān)系為()
A.a(chǎn)⊥b且a與b相交B.a(chǎn)⊥b且a與b不相交
C.a(chǎn)⊥bD.a(chǎn) 與b不一定垂直
C
,則存在直線。又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200212319403.png" style="vertical-align:middle;" />,所以,從而可得。而可能相交也可能異面,故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四邊形為矩形,平面,,平面于點(diǎn),且點(diǎn)上.
(Ⅰ)求證:
(Ⅱ)求四棱錐的體積;
(Ⅲ)設(shè)點(diǎn)在線段上,且,
試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,將ΔABD和ΔACD折起,使折起后的ΔABC成等邊三角形,則二面角C-AB-D的余弦值等于            (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分,其中第1小題6分,第2小題6分)
在直三棱柱中,,,且異面直線所成的角等于,設(shè)
(1)求的值;
(2)求直線到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)
如圖,在四棱錐中,底面是矩形.已知
(1)證明平面;
(2)求異面直線所成的角的大。
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.(本小題滿分14分)
如圖所示,PA⊥平面ABC,△ABC中BC⊥AC,
(1)求證:BC平面PAC;
(2)求證:平面PBC平面PAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正方體中,與直線異面,且與所成角為的面對(duì)角線共有      條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正三棱柱的正(主)視圖和側(cè)(左)視圖如圖所示. 設(shè)的中心分別是,現(xiàn)將此三棱柱繞直線旋轉(zhuǎn),射線旋轉(zhuǎn)所成的角為弧度(可以取到任意一個(gè)實(shí)數(shù)),對(duì)應(yīng)的俯視圖的面積為,則函數(shù)的最大值為          ;最小正周期為          .
說明:“三棱柱繞直線旋轉(zhuǎn)”包括逆時(shí)針方向和順時(shí)針方向,逆時(shí)針方向旋轉(zhuǎn)時(shí),旋轉(zhuǎn)所成的角為正角,順時(shí)針方向旋轉(zhuǎn)時(shí),旋轉(zhuǎn)所成的角為負(fù)角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=6,BC=2,沿對(duì)角線BD將△ABD向上折起,使點(diǎn)A移至點(diǎn)P,且點(diǎn)P在平面BCD內(nèi)的投影O在CD上.
(1) 求二面角P-DB-C的正弦值;
(2) 求點(diǎn)C到平面PBD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案