分析 (I)證明AD⊥BD,PD⊥BD,推出BD⊥平面PAD,即可證明PA⊥BD.
(II)DA,DB,DP兩兩垂直,建立空間直角坐標(biāo)系D-xyz,求出相關(guān)點(diǎn)的坐標(biāo),平面PAB的一個(gè)法向量,平面PCB的一個(gè)法向量,利用空間向量的數(shù)量積求解即可.
另解:(II)作AK⊥PB于K,連結(jié)DK,則DK⊥PB,設(shè)∠AKD=α,則α是二面角A-PB-D的平面角,通過求解三角形即可推出結(jié)果.
解答 解:(I)證明:在△ADB中,∵∠DAB=60°,AB=2AD=2,
由余弦定理得,BD2=AD2+AB2-2AD•ABcos60°,
∴BD2=3,∴AD2+BD2=AB2,
∴∠ADB=90°,即 AD⊥BD,
又∵PD⊥底面ABCD,BD?平面ABCD,
∴PD⊥BD,
又∵AD,PD是平面PAD內(nèi)兩相交直線(或PD∩AD=D),
∴BD⊥平面PAD,
∵AP?平面PAD,
∴PA⊥BD.
(II)由(I)知,DA,DB,DP兩兩垂直,
建立空間直角坐標(biāo)系D-xyz
則A(1,0,0),$B(0\;,\;\sqrt{3}\;,\;0)$,$C(-1\;,\;\sqrt{3}\;,\;0)$,
D(0,0,0),P(0,0,1),
設(shè)平面PAB的一個(gè)法向量為n=(x,y,1),
因?yàn)?nbsp;$\overrightarrow{BP}=(0\;,\;-\sqrt{3}\;,\;1)$,$\overrightarrow{AP}=(-1\;,\;0\;,\;1)$,
所以,解之x=1,$y=\frac{{\sqrt{3}}}{3}$,
所以 ${n}=(\;1\;,\;\frac{{\sqrt{3}}}{3}\;\;,\;1)$
由于x軸∥平面PCB,設(shè)平面PCB的一個(gè)法向量可為m=(0,y',1),
因?yàn)?nbsp;$\overrightarrow{BP}=(0\;,\;-\sqrt{3}\;,\;1)$,所以 $\overrightarrow{BP}•{m}=0-\sqrt{3}y+1=0$,解之$y'=\frac{{\sqrt{3}}}{3}$,所以 ${m}=(0\;,\;\frac{{\sqrt{3}}}{3}\;,\;1)$)
設(shè)二面角A-PB-C的大小為θ($\frac{π}{2}<θ<π$(此處要看觀察)),
因此,cosθ=$-\frac{{\frac{4}{3}}}{{\frac{{2\sqrt{7}}}{3}}}$=$-\frac{{2\sqrt{7}}}{7}$
故二面角A-PB-C的余弦值為$-\frac{{2\sqrt{7}}}{7}$.
另解:(II)由(I)知,AD⊥BD,又易知PD⊥AD,
且PD∩BD=D,所以AD⊥平面PDB,作AK⊥PB于K,連結(jié)DK,則DK⊥PB(圖5),
設(shè)∠AKD=α,則α是二面角A-PB-D的平面角,
由于AD∥BC,所以BC⊥平面PDB,
則二面角D-BP-C是直角,
因此,二面角A-PB-C為90°+α,由(I)知,AD=1,$BD=\sqrt{3}$,PD=1,
所以PB=2,DK=√3/2,tanα=$\frac{2}{{\sqrt{3}}}$,sinα=$\frac{2}{{\sqrt{7}}}$=$\frac{{2\sqrt{7}}}{7}$,
因此,$cos({90°}+α)=-sinα=-\frac{{2\sqrt{7}}}{7}$,故二面角A-PB-C的余弦值為$-\frac{{2\sqrt{7}}}{7}$.
點(diǎn)評(píng) 本題考查直線與平面垂直的判定定理以及性質(zhì)定理的應(yīng)用,二面角的平面角的求法,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
男性公務(wù)員 | 女性公務(wù)員 | 總計(jì) | |
有意愿生二胎 | 15 | 45 | |
無意愿生二胎 | 25 | ||
總計(jì) |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (8,-1) | B. | (-8,1) | C. | (-2,-3) | D. | (-15,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
A1 | 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com