【題目】已知曲線C1的參數(shù)方程為 (為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線C2: . (Ⅰ)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)若C1與C2相交于A、B兩點(diǎn),設(shè)點(diǎn)F(1,0),求 的值.
【答案】解:(I)∵曲線C1的參數(shù)方程為 (為參數(shù)),
∴ ,∴ ,
∴曲線C1的普通方程為 .
∵曲線C2: ,∴3ρ2+ρ2sin2θ=12,
∴3(x2+y2)+y2=12,∴3x2+4y2=12,
∴C2的直角坐標(biāo)方程為 .
(Ⅱ)由題意可設(shè),與A、B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,
將C1的參數(shù)方程代入C2的直角坐標(biāo)方程 ,
化簡整理得,5t2+4t﹣12=0,∴ ,
∴ ,
∵ ,∴ ,
∴
【解析】(I)曲線C1的參數(shù)方程消去參數(shù)能求出曲線C1的普通方程;由曲線C2極坐標(biāo)方程,能求出C2的直角坐標(biāo)方程.(Ⅱ)由題意可設(shè),與A、B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,將C1的參數(shù)方程代入C2的直角坐標(biāo)方程,得:5t2+4t﹣12=0,由此能求出
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如表:
與教育有關(guān) | 與教育無關(guān) | 合計(jì) | |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合計(jì) | 65 | 15 | 80 |
(1)能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”? 參考公式: (n=a+b+c+d).
附表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
(2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為X,求X的數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F是拋物線τ:x2=2py (p>0)的焦點(diǎn),點(diǎn)A是拋物線上的定點(diǎn),且 =(2,0),點(diǎn)B,C是拋物線上的動(dòng)點(diǎn),直線AB,AC斜率分別為k1 , k2 .
( I)求拋物線τ的方程;
(Ⅱ)若k1﹣k2=2,點(diǎn)D是點(diǎn)B,C處切線的交點(diǎn),記△BCD的面積為S,證明S為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月27日,一則“清華大學(xué)要求從2017級(jí)學(xué)生開始,游泳達(dá)到一定標(biāo)準(zhǔn)才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項(xiàng)重要的求生技能和運(yùn)動(dòng)項(xiàng)目受到很多人的喜愛.其實(shí),已有不少高校將游泳列為必修內(nèi)容.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對(duì)100名高三學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為 .
(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某理財(cái)公司有兩種理財(cái)產(chǎn)品A和B.這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立): 產(chǎn)品A產(chǎn)品B(其中p、q>0)
投資結(jié)果 | 獲利40% | 不賠不賺 | 虧損20% |
概率 |
投資結(jié)果 | 獲利20% | 不賠不賺 | 虧損10% |
概率 | p |
(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B進(jìn)行投資,如果一年后他們中至少有一人獲利的概率大于 ,求p的取值范圍;
(2)丙要將家中閑置的10萬元錢進(jìn)行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品A和產(chǎn)品B之中選其一,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)F(﹣1,0),過直線l:x=﹣2右側(cè)的動(dòng)點(diǎn)P作PA⊥l于點(diǎn)A,∠APF的平分線交x軸于點(diǎn)B,|PA|= |BF|.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)F的直線q交曲線C于M,N,試問:x軸正半軸上是否存在點(diǎn)E,直線EM,EN分別交直線l于R,S兩點(diǎn),使∠RFS為直角?若存在,求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,則Sn取最小值時(shí),n的值是( )
A.3
B.4
C.5
D.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com