2.已知函數(shù)$f(x)=sin(x+\frac{π}{3}),\;x∈R$
(Ⅰ)如果點$P(\frac{3}{5},\frac{4}{5})$是角α終邊上一點,求f(α)的值;
(Ⅱ)設g(x)=f(x)+sinx,求g(x)的單調(diào)增區(qū)間.

分析 (Ⅰ)根據(jù)三角函數(shù)的定義進行求解即可.
(Ⅱ)根據(jù)兩角和差的正弦公式結合輔助角公式進行化簡監(jiān)控卡.

解答 解:(Ⅰ)由已知:sinα=$\frac{4}{5}$,cosα=$\frac{3}{5}$-------(2分)
則f(α)=sin(α+$\frac{π}{3}$)=sinαcos$\frac{π}{3}$+cosαsin$\frac{π}{3}$=$\frac{1}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα=$\frac{1}{2}$×$\frac{4}{5}$+$\frac{\sqrt{3}}{2}$×$\frac{3}{5}$=$\frac{4+3\sqrt{3}}{10}$-------(6分)
(Ⅱ)g(x)=f(x)+sinx=($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)+sinx=$\frac{3}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx=$\sqrt{3}$sin(x+$\frac{π}{6}$)-----------(10分)
由-$\frac{π}{2}$+2kπ≤x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
得:2kπ-$\frac{2π}{3}$≤x≤2kπ+$\frac{π}{3}$,k∈Z-----------(12分)
則g(x)的單調(diào)增區(qū)間為[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$],k∈Z---------------(13分)

點評 本題主要考查三角函數(shù)的性質(zhì)和定義,利用輔助角公式將函數(shù)進行化簡是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖所示,正三角形ABC的外接圓半徑為2,圓心為O,PB=PC=2,D為AP上一點,AD=2DP,點D在平面ABC內(nèi)的射影為圓心O.
(Ⅰ)求證:DO∥平面PBC;
(Ⅱ)求平面CBD和平面OBD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)y=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$).
①若f(0)=1,則φ=$\frac{π}{6}$;
②若?x∈R,使f(x+2)-f(x)=4成立,則ω的最小值是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設變量x,y滿足約束條件:$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,則目標函數(shù)且ax+y=z的最小值為$\frac{1}{2}$時實數(shù)a的取值范圍是$\left\{{-\frac{1}{4}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設不等式(x-a)(x+a-2)<0的解集為N,若x∈N是$x∈M=[{-\frac{1}{2},2})$的必要條件,則a的取值范圍為$a≤-\frac{1}{2}或a≥\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,BC=1,AB=2,$PC=PD=\sqrt{2}$,E為PA中點.
(Ⅰ)求證:PC∥平面BED;
(Ⅱ)求二面角A-PC-D的余弦值;
(Ⅲ)在棱PC上是否存在點M,使得BM⊥AC?若存在,求$\frac{PM}{PC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知集合A=[0,3),B=[a,a+2).
(1)若a=-1,求A∪B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,|F1F2|=2$\sqrt{5}$,點P在橢圓上,tan∠PF2F1=2,且△PF1F2的面積為4.
(1)求橢圓的方程;
(2)點M是橢圓上任意一點,A1、A2分別是橢圓的左、右頂點,直線MA1,MA2與直線x=$\frac{3\sqrt{5}}{2}$分別交于E,F(xiàn)兩點,試證:以EF為直徑的圓交x軸于定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知兩條直線l1:2x+y-2=0與l2:2x-my+4=0
(1)若直線l1⊥l2,求直線l1與l2交點P的坐標;
(2)若直線l1∥l2,求實數(shù)m的值以及兩直線間的距離.

查看答案和解析>>

同步練習冊答案