設(shè)是兩個不同的平面,是兩條不同直線.①若,則
②若,則
③若,則
④若,則以上命題正確的是            .(將正確命題的序號全部填上)
②④

試題分析:對于①若,則,或者m在內(nèi), 因此錯誤。
對于②若,則,一條直線垂直與平行平面中的一個,必定垂直于另一個,成立。
對于③若,則,只有當m,n相交的時候成立,故錯誤。
對于④若,則,由于符合面面垂直的判定定理,因此正確,故填寫②④
點評:解決該試題的關(guān)鍵是熟練的運用線面平行和垂直的判定定理,以及面面垂直的判定定理來判定,同時可以結(jié)合實際生活中的實物來分析,屬于中檔題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,四棱錐S—ABCD的底面為正方形,SD底面ABCD,則下列結(jié)論中正確的是                (把正確的答案都填上)

(1)AC⊥SB
(2)AB∥平面SCD
(3)SA與平面SBD所成的角等于SC與平面SBD所成的角
(4)AB與SC所成的角等于DC與SA所成的角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,等腰△ABC的底邊AB=6,高CD=3,點E是線段BD上異于點B、D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記,用表示四棱錐P-ACFE的體積.

(Ⅰ)求 的表達式;
(Ⅱ)當x為何值時,取得最大值?
(Ⅲ)當V(x)取得最大值時,求異面直線AC與PF所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩個不重合的平面,給定以下條件:
內(nèi)不共線的三點到的距離相等;②內(nèi)的兩條直線,且;
是兩條異面直線,且;
其中可以判定的是(  )
A.①B.②C.①③D.③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖:正方體中,所成的角為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,在正四棱錐S-ABCD中,的中點,P點在側(cè)面△SCD內(nèi)及其邊界上運動,并且總是保持.則動點的軌跡與△組成的相關(guān)圖形最有可有是圖中的(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面ABCD是一直角梯形,,,,且PA=AD=DC=AB=1.

(1)證明:平面平面
(2)設(shè)AB,PA,BC的中點依次為M、N、T,求證:PB∥平面MNT
(3)求異面直線所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,矩形與矩形所在的平面互相垂直,將沿翻折,翻折后的點E恰與BC上的點P重合.設(shè),,則當__時,有最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知垂直平行四邊形所在平面,若,則平行四邊形一定是(填形狀)

查看答案和解析>>

同步練習冊答案