【題目】如圖,扇形OAB的半徑為1,圓心角為120°,四邊形PQRS是扇形的內(nèi)接矩形,當(dāng)其面積最大時,求點(diǎn)P的位置,并求此最大面積.

【答案】解:設(shè)SP中點(diǎn)為C,PQ中點(diǎn)為D,如圖所示;

設(shè)∠COP=θ,則CP=1×sinθ=sinθ,
CO=cosθ,
DQ=CP=sinθ,
又∠DOQ= ,
∴OD=
∴CD=OC﹣OD=cosθ﹣ ,
∴S四邊形PQRS=CD×SP
=(cosθ﹣ )2sinθ
=sin2θ﹣
=sinθ﹣
=sin2θ+ cos2θ﹣
= sin(2θ+ )﹣ ,
當(dāng)θ= 時,四邊形SPQR取得最大值為
Smax= ,
此時點(diǎn)P在弧AB的四等分點(diǎn)處
【解析】根據(jù)題意,設(shè)SP中點(diǎn)為C,PQ中點(diǎn)為D,∠COP=θ,表示出四邊形SPRS的面積,再利用三角恒等變換求出它的最大值即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用扇形面積公式的相關(guān)知識可以得到問題的答案,需要掌握若扇形的圓心角為,半徑為,弧長為,周長為,面積為,則,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處的切線與直線垂直,求的單調(diào)區(qū)間;

(2)求證: 恒成立的充要條件是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

設(shè)函數(shù)

(Ⅰ)若是函數(shù)的極值點(diǎn),1和的兩個不同零點(diǎn),且

,求的值;

(Ⅱ)若對任意, 都存在 為自然對數(shù)的底數(shù)),使得

成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高三年級學(xué)生寒假期間的學(xué)習(xí)情況,某學(xué)校抽取了甲、乙兩班作為對象,調(diào)查這兩個班的學(xué)生在寒假期間平均每天學(xué)習(xí)的時間(單位:小時),統(tǒng)計結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生平均每天學(xué)習(xí)時間在區(qū)間的有8人.

(I)求直方圖中的值及甲班學(xué)生平均每天學(xué)習(xí)時間在區(qū)間的人數(shù);

(II)從甲、乙兩個班平均每天學(xué)習(xí)時間大于10個小時的學(xué)生中任取4人參加測試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,A,B兩點(diǎn)的極坐標(biāo)分別為.

(1)求圓C的普通方程和直線的直角坐標(biāo)方程;

(2)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(2)若有兩個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采取隨機(jī)抽樣的方法抽取了名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計,按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為組: ,得到如圖所示的頻率分布直方圖:

1)寫出的值;

2)求抽取的名學(xué)生中月上網(wǎng)次數(shù)不少于次的學(xué)生的人數(shù);

3)在抽取的名學(xué)生中,從月上網(wǎng)次數(shù)少于次的學(xué)生中隨機(jī)抽取人,求至少抽取到名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=2.
(1)若點(diǎn)M的直角坐標(biāo)為(2, ),直線l與曲線C1交于A、B兩點(diǎn),求|MA|+|MB|的值.
(2)設(shè)曲線C1經(jīng)過伸縮變換 得到曲線C2 , 求曲線C2的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校50名學(xué)生參加2015年全國數(shù)學(xué)聯(lián)賽初賽,成績?nèi)拷橛?/span>90分到140分之間.將成績結(jié)果按如下方式分成五組:第一組,第二組,,第五組.按上述分組方法得到的頻率分布直方圖如圖所示.

1)若成績大于或等于100分且小于120分認(rèn)為是良好的,求該校參賽學(xué)生在這次數(shù)學(xué)聯(lián)賽中成績良好的人數(shù);

2)若從第一、五組中共隨機(jī)取出兩個成績,記為取得第一組成績的個數(shù),求的分布列與數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊答案