A. | (-∞,1) | B. | (1,2) | C. | (0,1) | D. | (1,+∞) |
分析 先確定函數(shù)的定義域,再考慮內(nèi)外函數(shù)的單調(diào)性,即可得到結(jié)論.
解答 解:由-x2+2x>0,可得函數(shù)的定義域為(0,2)
∵-x2+2x=-(x-1)2+1,∴函數(shù)t=-x2+2x在(0,1)上單調(diào)遞增
∵y=lgt在定義域上為增函數(shù)
∴函數(shù)y=lg(-x2+2x)的單調(diào)遞增區(qū)間是(0,1)
故選:C.
點評 本題考查復(fù)合函數(shù)的單調(diào)性,確定函數(shù)的定義域,內(nèi)外函數(shù)的單調(diào)性是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若y=ln3,則y′=0 | B. | 若y=-$\sqrt{x}$,則y′=-$\frac{1}{2\sqrt{x}}$ | ||
C. | 若y=$\frac{1}{\sqrt{x}}$,則y′=-$\frac{1}{2\sqrt{x}}$ | D. | 若y=3x,則y′=3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 15 | C. | 16 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com