已知函數(shù)f(x)=ax2+2ax+1(-2<a<0),若x1<x2,且x1+x2=a,則( 。
A、f(x1)>f(x2
B、f(x1)<f(x2
C、f(x1)=f(x2
D、f(x1),f(x2)大小不確定
E、所以f(x1)>f(x2
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:找到f(x)的對(duì)稱軸x=-1,再考慮到
1
2
(x1+x2)在(-1,0),當(dāng)
1
2
(x1+x2)=-1時(shí),此時(shí)f(x1)=f(x2),再通過(guò)圖象平移求得.
解答: 由函數(shù)表達(dá)式 f(x)=ax2+2ax+1=a(x+1)2+1-a 2,其對(duì)稱軸為x=-1,又 x1+x2=a,所以-1<
1
2
(x1+x2)=
1
2
a
<0,
當(dāng)
1
2
(x1+x2)=-1時(shí),此時(shí)f(x1)=f(x2),當(dāng)圖象向右移動(dòng)時(shí),所以f(x1)>f(x2
點(diǎn)評(píng):這個(gè)題中難題,考察二次函數(shù)的對(duì)稱軸與區(qū)間的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校從高二甲、乙兩個(gè)班中各選6名同掌參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績(jī)的眾數(shù)是85,乙班學(xué)生成績(jī)的平均分為81,則x+y的值為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某校高三數(shù)學(xué)學(xué)業(yè)水平測(cè)試卷中隨機(jī)抽取部分試卷,對(duì)其成績(jī)進(jìn)行分析,因某特殊原因,所得的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如圖,則頻率分布直方圖中,從左往右第四個(gè)矩形的面積為( 。
A、
6
25
B、
4
25
C、
6
23
D、
4
23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知n為正偶數(shù),用數(shù)學(xué)歸納法證明1-
1
2
+
1
3
-
1
4
+…+
1
n-1
-
1
n
=2(
1
n+2
+
1
n+4
+…+
1
2n
)
時(shí),第一步應(yīng)驗(yàn)證( 。
A、1=2×
1
2
B、1-
1
2
+
1
3
=2(
1
1+2
+
1
2+4
)
C、1-
1
2
+
1
3
-
1
4
=2(
1
4+2
+
1
4+4
)
D、1-
1
2
=2×
1
2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的各項(xiàng)為正數(shù),且3是a5和a6的等比中項(xiàng),則a1a2…a10=( 。
A、39
B、310
C、311
D、312

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式|x-3|+|x-4|≥m的解集為R,則實(shí)數(shù)m的取值范圍(  )
A、m<1
B、m≤1
C、m≤
1
10
D、m<
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=-2012,其前n項(xiàng)和為Sn,若a12-a10=4,則S2012的值等于( 。
A、-2010
B、-2011
C、-2012
D、-2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式x2-(a2+a)x+a3≥0對(duì)一切a∈[-2,
2
]都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的方程:x(x-1)(x-2)=120.

查看答案和解析>>

同步練習(xí)冊(cè)答案