已知數(shù)列{an}中,a1=56,an+1=an-12(n∈N*).
(I)求a101;
(Ⅱ)(理科)求此數(shù)列的前n項(xiàng)和Sn的最大值;(文科)求此數(shù)列的前10項(xiàng)和S10
考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)易得數(shù)列{an}是公差為-12的等差數(shù)列,即可得出結(jié)論;
(2)利用等差數(shù)列是遞減數(shù)列,由an=56-12(n-1)=68-12n≤0得n≥
17
3
,即可得出結(jié)論.
解答: 解:(1)由an+1=an-12可得an+1-an=-12,
故數(shù)列{an}是公差為-12的等差數(shù)列,
故a101=56-12(101-1)=-1144;
(2)由(1)可知an=56-12(n-1)=68-12n,
令68-12n≤0可得n≥
17
3
,
故數(shù)列{an}的前5項(xiàng)為正,從第6項(xiàng)開(kāi)始為負(fù),
故數(shù)列的前5項(xiàng)和最大,最大值為S5=5×56+
5×4
2
×(-12)=160.
(文科)s10=10×56+
10×9
2
×(-12)=560-540=20.
點(diǎn)評(píng):本題主要考查等差數(shù)列的定義及性質(zhì),考查等差數(shù)列的基本運(yùn)算及求和公式知識(shí),屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2,x≤2
2x-3,2<x≤5
1
x
,x>5
,請(qǐng)?jiān)O(shè)計(jì)算法框圖,要求輸入自變量,輸出函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β均為銳角,且sinα=
1
5
,cosβ=
1
10
,
(1)求sin(α-β)的值
(2)求α-β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(6,2),
b
=(-3,k),當(dāng)k為何值時(shí):
(1)
a
b
?
(2)
a
b
?
(3)
a
b
的夾角為鈍角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的單調(diào)區(qū)間和值域.
(1)y=
1-x
2x+5
;   
(2)y=2x-
1-2x

(3)y=(
1
2
)|x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用20cm長(zhǎng)的鐵絲折成一個(gè)面積最大的矩形,應(yīng)當(dāng)怎樣折?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α∈(0,
π
2
),tanα=
1
2

求:(1)tan2α的值;    
(2)cos(2α+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,當(dāng)x取何值時(shí),x+
1
x
的值最小,最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
x+1
各項(xiàng)均為正數(shù)的數(shù)列{an},滿(mǎn)足a1=1,an+2=f(an),若a2014=a2012,則a20+a11=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案