【題目】已知函數(shù)f(x)=sinx(2 cosx﹣sinx)+1 (Ⅰ)求f(x)的最小正周期;
(Ⅱ)討論f(x)在區(qū)間[﹣ ]上的單調(diào)性.

【答案】解:(Ⅰ)函數(shù)f(x)=sinx(2 cosx﹣sinx)+1

=2 sinxcosx﹣2sin2x+1

= (2sinxcosx)+(1﹣2sin2x)

= sin2x+cos2x

=2( sin2x+ cos2x)

=2sin(2x+ ),

∴f(x)的最小正周期T= =π;

(Ⅱ)令z=2x+

則函數(shù)y=2sinz在區(qū)間[﹣ +2kπ, +2kπ],k∈Z上單調(diào)遞增;

令﹣ +2kπ≤2x+ +2kπ,k∈Z,

解得﹣ +kπ≤x≤ +kπ,k∈Z,

令A(yù)=[﹣ , ],B=[﹣ +kπ, +kπ],k∈Z,

則A∩B=[﹣ , ];

∴當(dāng)x∈[﹣ , ]時(shí),f(x)在區(qū)間[﹣ , ]上單調(diào)遞增,在區(qū)間[ , ]上的單調(diào)遞減.


【解析】(Ⅰ)化函數(shù)f(x)為正弦型函數(shù),求出它的最小正周期T即可;(Ⅱ)根據(jù)正弦函數(shù)的單調(diào)性,求出f(x)在區(qū)間[﹣ , ]上單調(diào)遞增,[ , ]上的單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條光線從點(diǎn)(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(1,0), =(m,1),且 的夾角為
(1)求| ﹣2 |;
(2)若( )與 垂直,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=1,O1:(x﹣4)2+y2=4,動(dòng)點(diǎn)P在直線x+ y+b=0上,過(guò)P分別作圓O,O1的切線,切點(diǎn)分別為A,B,若滿足PB=2PA的點(diǎn)P有且只有兩個(gè),則實(shí)數(shù)b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=4sinωxcos(ωx+ )+1(ω>0),其圖象上有兩點(diǎn)A(s,t),B(s+2π,t),其中﹣2<t<2,線段AB與函數(shù)圖象有五個(gè)交點(diǎn). (Ⅰ)求ω的值;
(Ⅱ)若函數(shù)f(x)在[x1 , x2]和[x3 , x4]上單調(diào)遞增,在[x2 , x3]上單調(diào)遞減,且滿足等式x4﹣x3=x2﹣x1= (x3﹣x2),求x1、x4所有可能取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x+1)的定義域?yàn)閇﹣2,3],則f(3﹣2x)的定義域?yàn)椋?/span>
A.[﹣5,5]
B.[﹣1,9]
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4月23人是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書(shū)謎”,低于60分鐘的學(xué)生稱為“非讀書(shū)謎”
(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)謎”與性別有關(guān)?

非讀書(shū)迷

讀書(shū)迷

合計(jì)

15

45

合計(jì)


(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書(shū)謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=x( + ),
(1)試判斷f(x)的奇偶性,
(2)求證f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)=ax﹣f(x)(a>0且a≠1),其中f(x)是定義在[a﹣6,2a]上的奇函數(shù),若 ,則g(1)=(
A.0
B.﹣3
C.1
D.﹣1

查看答案和解析>>

同步練習(xí)冊(cè)答案