1.(lg0.01)2-log53•log325+log2$\root{3}{4}$=$\frac{8}{3}$.

分析 根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(lg0.01)2-log53•log325+log2$\root{3}{4}$=4-$\frac{lg3}{lg5}$•$\frac{2lg5}{lg3}$+$\frac{2}{3}$=4-2+$\frac{2}{3}$=$\frac{8}{3}$,
故答案為:$\frac{8}{3}$.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知i為虛數(shù)單位,復(fù)數(shù)z=-$\frac{1}{3}$+$\frac{2\sqrt{2}}{3}$i的共軛復(fù)數(shù)為$\overline{z}$,則$\overline{z}$的虛部為( 。
A.$\frac{2\sqrt{2}}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$iD.-$\frac{2\sqrt{2}}{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=12,a1,a2,a6成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{6n-1}{{{{({3n+1})}^2}•a_n^2}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若|$\overrightarrow{AB}$|=1,若|$\overrightarrow{CA}$|=2|$\overrightarrow{CB}$|,則$\overrightarrow{CA}$•$\overrightarrow{CB}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{10}$,且$\overrightarrow$•$\overrightarrow{c}$=$5\sqrt{2}$,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y+1≥0}\\{0≤x≤1}\end{array}\right.$,則|x-3y|的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足Sn=2an-2(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=$\frac{lo{g}_{2}{a}_{n}^{2}-1}{{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求Tn以及滿(mǎn)足Tn>$\frac{5}{2}$時(shí),n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知二項(xiàng)式為(x-$\frac{1}{{x}^{2}}$)9,求:
(1)展開(kāi)式的常數(shù)項(xiàng)
(2)含x3的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.把極坐標(biāo)方程ρ=sinθ+cosθ化成直角坐標(biāo)標(biāo)準(zhǔn)方程是(x-$\frac{1}{2}$)2+(y-$\frac{1}{2}$)2=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案