分析 由已知求出$\overrightarrow{a}-\overrightarrow{c},\overrightarrow-\overrightarrow{c}$的坐標(biāo),結(jié)合數(shù)量積為0可得xy-2(x+y)-5=0,再由基本不等式轉(zhuǎn)化為關(guān)于(x+y)的不等式,求出x+y的最小值,即可求得$|{\overrightarrow a+\overrightarrow b}|$的最小值.
解答 解:∵$\overrightarrow a=(x,4),\overrightarrow b=(y,-2),\overrightarrow c=(2,1)$,
∴$\overrightarrow{a}-\overrightarrow{c}=(x-2,3),\overrightarrow-\overrightarrow{c}=(y-2,-3)$,
由$(\overrightarrow a-\overrightarrow c)⊥(\overrightarrow b-\overrightarrow c)$,得(x-2)(y-2)-9=0,
即xy-2(x+y)-5=0.
又x>0,y>0,∴2(x+y)+5=xy$≤\frac{(x+y)^{2}}{4}$,解得x+y≤-2(舍),或x+y≥10.
$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{(x+y)^{2}+4}$$≥\sqrt{104}$=$2\sqrt{26}$
故答案為:$2\sqrt{26}$.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2] | B. | (-2,2] | C. | (-2,2) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1]∪[2,+∞) | B. | [1,2] | C. | [0,1] | D. | [-1,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{7}$ | C. | $\sqrt{13}$ | D. | $\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com