設(shè)f(x)=4x-2x+1(x≥0),則f-1(0)=
 
考點(diǎn):反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由互為反函數(shù)的兩個(gè)函數(shù)的定義域和值域間的關(guān)系得到4x-2x+1=0,求解x的值得答案.
解答: 解:由4x-2x+1=0,得(2x2-2•2x=0,
即2x=0(舍)或2x=2,解得x=1.
∴f-1(0)=1.
故答案為:1.
點(diǎn)評(píng):本題考查了反函數(shù),考查了互為反函數(shù)的兩個(gè)函數(shù)的定義域和值域間的關(guān)系,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若(ax2+
b
x
6的展開式中x3項(xiàng)的系數(shù)為20,則ab的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非空數(shù)集A如果滿足:①0∉A;②若對(duì)?x∈A,有
1
x
∈A,則稱A是“互倒集”.給出以下數(shù)集:
①{x∈R|x2+ax+1=0};  ②{x|x2-4x+1<0};  ③{y|y=
lnx
x
,x∈[
1
e
,1)∪(1,e]}
;
④{y|y=
2x+
2
5
x+
1
x
x∈[0,1)
x∈[1,2]
.其中“互倒集”的個(gè)數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B兩地相距150km,某人駕駛汽車以60km/h的速度從A地到達(dá)B地,在B地停留1h后再以50km/h的速度返回A地并停在A地,將汽車與A地的距離s(單位:km)表示成時(shí)間t(單位:h)的函數(shù)為( 。
A、s=60t
B、s=
60t(0≤t≤2.5)
150(2.5<t≤3.5)
150-50(t-3.5)(3.5<t≤6.5)
0(t>6.5)
C、s=
150(2.5<t≤3.5)
150-50(t-3.5)(3.5<t≤6.5)
D、s=60t+50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-3)2+(y-4)2=1,點(diǎn)A(0,-1)與B(0,1),P為圓C上動(dòng)點(diǎn),當(dāng)|PA|2+|PB|2取最大值時(shí)點(diǎn)P坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ∈[0,
π
4
],sin2θ=
2
2
3
,則cosθ=( 。
A、
2
3
B、
1
3
C、
6
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},則M∩(CUN)=( 。
A、{0,1,3,4,5}
B、{0,2,3,5}
C、{0,3}
D、{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>0},B={x|y=log2(1-x2)},則A∩B=( 。
A、(1,+∞)
B、(0,+∞)
C、(0,1)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=lnx-x+4的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案