若(ax2+
b
x
6的展開(kāi)式中x3項(xiàng)的系數(shù)為20,則ab的值為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:計(jì)算題,二項(xiàng)式定理
分析:直接利用二項(xiàng)式定理的通項(xiàng)公式,求出x3項(xiàng)的系數(shù)為20,得到ab的值.
解答: 解:(ax2+
b
x
6的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=
C
r
6
•a6-r•br•x12-3r,
令12-3r=3,求得r=3,
故(ax2+
b
x
6的展開(kāi)式中x3項(xiàng)的系數(shù)為
C
3
6
•a3•b3=20,
∴ab=1.
故答案為:1.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,考查計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=
1
2
n(n+1),n∈N*,bn=3an+(-1)n-1an,則數(shù)列{bn}的前2n+1項(xiàng)和為( 。
A、
32n+2-1
2
+n
B、
1
2
•32n+2+n+
1
2
C、
32n+2-1
2
-n
D、
1
2
•32n+2-n+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(m,n)在直線(xiàn)x+2y=1上,其中mn>0,則
2
m
+
1
n
的最小值為( 。
A、4
2
B、8
C、9
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方形ABCD中,E為AB的中點(diǎn)P是A為圓心,AB為半徑的圓弧
BD
上的任意一點(diǎn).
(1)若向正方形ABCD內(nèi)撒一枚幸運(yùn)小花朵,則小花朵落在扇形ABD內(nèi)的概率為
 
;
(2)設(shè)∠PAB=θ,向量
AC
DE
AP
(λ,μ∈R),若μ-λ=1,則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線(xiàn)AD交⊙O于D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線(xiàn)于點(diǎn)E,OE交AD于點(diǎn)F.若
AC
AB
=
3
5

(Ⅰ)求證:OD∥AE;
(Ⅱ)求
AF
FD
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=sin3x+sinx3的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=
12
5
,求sinα,cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,1≤|an|≤
2
,求證:數(shù)列{an}為常數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=4x-2x+1(x≥0),則f-1(0)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案