函數(shù)f(x)=x3+bx2+cx+d的大致圖象,x1、x2是兩個極值點,則x12+x22=
 

精英家教網(wǎng)
分析:首先由函數(shù)f(x)的圖象過三個已知點,可求出b、c、d,即函數(shù)f(x)的解析式;然后求出其導(dǎo)函數(shù)f′(x);而x1、x2是方程f′(x)=0的兩根,則利用韋達定理  即可把x12+x22表示出來,問題解決.
解答:解:∵函數(shù)f(x)=x3+bx2+cx+d的零點有-1、0、2.
-1+b-c+d=0
d=0
8+4b+2c+d=0
解得b=-1,c=-2,d=0.
∴f(x)=x3-x2-2x∴f′(x)=3x2-2x-2.
又x1、x2是f(x)的兩個極值點,∴x1、x2是方程3x2-2x-2=0的兩個根.
則x1+x2=
2
3
,x1•x2=-
2
3

因此x12+x22=(x1+x22-2x1•x2=
4
9
+
4
3
=
16
9

故答案為
16
9
點評:要搞清極值與導(dǎo)數(shù)的關(guān)系:“函數(shù)f(x)有極值點a”是“f′(a)=0”的充分不必要條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點.
(1)求b的值;
(2)若1是其中一個零點,求f(2)的取值范圍;
(3)若a=1,g(x)=f′(x)+3x2+lnx,試問過點(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)一模)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線l不過第四象限且斜率為3,又坐標原點到切線l的距離為
10
10
,若x=
2
3
時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)已知函數(shù)f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0時,試求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(2)若a=0,且曲線y=f(x)在點A、B(A、B不重合)處切線的交點位于直線x=2上,證明:A、B 兩點的橫坐標之和小于4;
(3)如果對于一切x1、x2、x3∈[0,1],總存在以f(x1)、f(x2)、f(x3)為三邊長的三角形,試求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3ax+b(a≠0),已知曲線y=f(x)在點(2,f(x))處在直線y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=x3+ax2-x+1的極值情況,4位同學(xué)有下列說法:甲:該函數(shù)必有2個極值;乙:該函數(shù)的極大值必大于1;丙:該函數(shù)的極小值必小于1;。悍匠蘤(x)=0一定有三個不等的實數(shù)根. 這四種說法中,正確的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案