5.下列命題中正確的是(  )
A.用一個(gè)平面去截棱錐,棱錐底面和截面之間的部分是棱臺(tái)
B.有兩個(gè)面平行,其他面都是平行四邊形的幾何體叫棱柱
C.棱臺(tái)的底面是兩個(gè)相似的正方形
D.棱臺(tái)的側(cè)棱延長(zhǎng)后必交于一點(diǎn)

分析 在A中,平面不一定與底面平行;在B中,側(cè)棱不一定相交于一點(diǎn);在C中,棱臺(tái)的底面是兩個(gè)相似的多邊形;在D中,由棱臺(tái)的性質(zhì)得棱臺(tái)的側(cè)棱延長(zhǎng)后必交于一點(diǎn).

解答 解:在A中,用一個(gè)平行于底面的平面去截棱錐,棱錐底面和截面之間的部分是棱臺(tái),故A不正確;
在B中,兩個(gè)底面平行且相似,其余各面都是梯形的多面體是棱臺(tái),側(cè)棱不一定相交于一點(diǎn),故B不正確.
在C中,棱臺(tái)的底面是兩個(gè)相似的多邊形,故C錯(cuò)誤;
在D中,由棱臺(tái)的性質(zhì)得棱臺(tái)的側(cè)棱延長(zhǎng)后必交于一點(diǎn),故D正確.
故選:D.

點(diǎn)評(píng) 本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意棱臺(tái)的定義及性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓的焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4y的焦點(diǎn),離心率e=$\frac{2}{\sqrt{5}}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右焦點(diǎn)F作與坐標(biāo)軸不垂直的直線l,交橢圓于A、B兩點(diǎn),設(shè)點(diǎn)M(m,0)是線段OF上的一個(gè)動(dòng)點(diǎn),且($\overrightarrow{MA}$+$\overrightarrow{MB}$)⊥$\overrightarrow{AB}$,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(x,4),且$\overrightarrow a$∥$\overrightarrow b$,則|$\overrightarrow a$+$\overrightarrow b$|=(  )
A.$\sqrt{5}$B.5C.$\sqrt{85}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a2+b2=c2+ab,c=1.
(1)求角C的大。
(2)求$\frac{1}{2}$b+a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知平行四邊形ABCD的中心為(0,3),AB邊所在的直線方程分別為3x+4y-2=0,則CD邊所在的直線方程為3x+4y-22=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.△ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知b=c,sinA=1-$\frac{a^2}{{2{b^2}}}$,則A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為$\sqrt{2}$,且過點(diǎn)M(4,-$\sqrt{10}$).
(1)求雙曲線方程;
(2)若點(diǎn)N(3,m)在雙曲線上,求證:$\overrightarrow{NF}$1•N$\overrightarrow{F}$2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓的方程為x2+y2=1,則圓心到直線x+y+2=0的距離為( 。
A.1B.2C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知等比數(shù)列{an}中,a1•a2•…•a5=32,則a3=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案