已知橢圓的兩個焦點和短軸的兩個端點恰好為一個正方形的四個頂點,則該橢圓的離心率為( )

A B C D

 

【答案】

D

【解析】

試題分析:依題意橢圓的焦距和短軸長相等,故,,∴.

考點:橢圓的簡單幾何性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆廣東省廣州市高三9月三校聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的兩個焦點和上下兩個頂點是一個邊長為2且∠F1B1F2的菱形的四個頂點.

(1)求橢圓的方程;

(2)過右焦點F2 ,斜率為)的直線與橢圓相交于兩點,A為橢圓的右頂點,直線、分別交直線于點、,線段的中點為,記直線的斜率為.求證:為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩個焦點為(0,2)和(0,-2),并且橢圓經(jīng)過點,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市靜安區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓的兩個焦點為F1(-c,0)、F2(c,0),c2是a2與b2的等差中項,其中a、b、c都是正數(shù),過點A(0,-b)和B(a,0)的直線與原點的距離為
(1)求橢圓的方程;
(2)點P是橢圓上一動點,定點A1(0,2),求△F1PA1面積的最大值;
(3)已知定點E(-1,0),直線y=kx+t與橢圓交于C、D相異兩點.證明:對任意的t>0,都存在實數(shù)k,使得以線段CD為直徑的圓過E點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市靜安區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓的兩個焦點為F1(-c,0)、F2(c,0),c2是a2與b2的等差中項,其中a、b、c都是正數(shù),過點A(0,-b)和B(a,0)的直線與原點的距離為
(1)求橢圓的方程;
(2)過點A作直線交橢圓于另一點M,求|AM|長度的最大值;
(3)已知定點E(-1,0),直線y=kx+t與橢圓交于C、D相異兩點.證明:對任意的t>0,都存在實數(shù)k,使得以線段CD為直徑的圓過E點.

查看答案和解析>>

同步練習(xí)冊答案